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ABSTRACT Aspergillus fumigatus is a major opportunistic human pathogen. Multiple
traits contribute to A. fumigatus pathogenicity, including its ability to produce spe-
cific secondary metabolites, such as gliotoxin. Gliotoxin is known to inhibit the host
immune response, and genetic mutants that inactivate gliotoxin biosynthesis (or
secondary metabolism in general) attenuate A. fumigatus virulence. The genome of
Aspergillus fischeri, a very close nonpathogenic relative of A. fumigatus, contains a
biosynthetic gene cluster that is homologous to the A. fumigatus gliotoxin cluster.
However, A. fischeri is not known to produce gliotoxin. To gain further insight into
the similarities and differences between the major pathogen A. fumigatus and the
nonpathogen A. fischeri, we examined whether A. fischeri strain NRRL 181 biosynthe-
sizes gliotoxin and whether the production of secondary metabolites influences the
virulence profile of A. fischeri. We found that A. fischeri biosynthesizes gliotoxin un-
der the same conditions as A. fumigatus. However, whereas loss of laeA, a master
regulator of secondary metabolite production (including gliotoxin biosynthesis), has
previously been shown to reduce A. fumigatus virulence, we found that /aeA loss
(and loss of secondary metabolite production) in A. fischeri does not influence its vir-
ulence. These results suggest that LaeA-regulated secondary metabolites are viru-
lence factors in the genomic and phenotypic background of the major pathogen A.
fumigatus but are much less important in the background of the nonpathogen A. fis-
cheri. Understanding the observed spectrum of pathogenicity across closely related
pathogenic and nonpathogenic Aspergillus species will require detailed characteriza-
tion of their biological, chemical, and genomic similarities and differences.

IMPORTANCE Aspergillus fumigatus is a major opportunistic fungal pathogen of hu-
mans, but most of its close relatives are nonpathogenic. Why is that so? This impor-
tant, yet largely unanswered, question can be addressed by examining how A. fu-
migatus and its close nonpathogenic relatives are similar or different with respect to
virulence-associated traits. We investigated whether Aspergillus fischeri, a nonpatho-
genic close relative of A. fumigatus, can produce gliotoxin, a mycotoxin known to
contribute to A. fumigatus virulence. We discovered that the nonpathogenic A. fisch-
eri produces gliotoxin under the same conditions as those of the major pathogen A.
fumigatus. However, we also discovered that, in contrast to what has previously
been observed in A. fumigatus, the loss of secondary metabolite production in A. fis-
cheri does not alter its virulence. Our results are consistent with the “cards of viru-
lence” model of opportunistic fungal disease, in which the ability to cause disease
stems from the combination (“hand”) of virulence factors (“cards”) but not from indi-
vidual factors per se.
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spergillus fumigatus is a major fungal pathogen responsible for hundreds of thou-

sands of infections and deaths each year (1, 2). Several secondary metabolites
biosynthesized by A. fumigatus have been shown to be required for disease (3). For
example, gliotoxin (Fig. 1A), a secondary metabolite that belongs to the epipolythio-
dioxopiperazine (ETP) class of mycotoxins (4-6), can be detected in the sera of patients
with invasive aspergillosis (7) and is known to inhibit the host immune response (3).
When the gliP gene, which encodes the essential nonribosomal peptide synthetase of
the gliotoxin biosynthetic gene cluster, is deleted from A. fumigatus, the mutant strain
does not biosynthesize gliotoxin and exhibits attenuated virulence in a nonneutropenic
murine model of aspergillosis (8-10). Similarly, deletion of laeA, a positive regulator of
several A. fumigatus secondary metabolites, including gliotoxin, also reduces virulence
(11, 12). These results suggest that gliotoxin, as well as other secondary metabolites,
contributes to A. fumigatus virulence (3).

Even though A. fumigatus is a major pathogen, its closest relatives are nonpatho-
genic (13-15). For example, the closely related species Aspergillus fischeri has been
identified as the cause of only a few clinical cases (16, 17) and is not considered
pathogenic. Detailed comparisons of levels of virulence in diverse murine and inver-
tebrate models of fungal disease have shown that A. fischeri is much less virulent than
A. fumigatus (14). It is important to emphasize here that nonpathogens can sometimes
cause disease in diverse animal models of aspergillosis, especially when high inoculums
of spores are administered, as we have observed in previous experiments with A.
fischeri; however, in all such cases, nonpathogens exhibit lower levels of virulence than
pathogens (14).

Despite significant differences in their abilities to cause disease, a recent examina-
tion of known genetic contributors to virulence revealed that nearly all genes known
to contribute to A. fumigatus disease are also present in A. fischeri (14). For example,
both species appear to contain laeA, and deletion of the laeA gene from either species
reduces the biosynthesis of secondary metabolites (14, 18), suggesting that the gene’s
function is conserved. Similarly, both species appear to contain intact gliotoxin bio-
synthetic gene clusters (Fig. 1B); however, while gliotoxin production has been shown
in A. fumigatus and a few other closely related species (19), it has not been reported to
be produced by A. fischeri (14, 19). These data raise two questions: is A. fischeri capable
of biosynthesizing gliotoxin, and if it is, how does the production of gliotoxin, and
secondary metabolites more generally, influence its virulence profile?

A. fischeri, a nonpathogenic relative of the major pathogen A. fumigatus, can
also biosynthesize gliotoxin. To test whether A. fischeri biosynthesizes gliotoxin, we
examined the chemical profile of a standard of gliotoxin, an extract of A. fumigatus
strain Af293, and an extract of A. fischeri strain NRRL 181 via ultrahigh-performance
liquid chromatography-high-resolution electrospray ionization mass spectrometry
(UHPLC-HRESIMS). We collected three sets of data: chromatographic retention time,
high-resolution mass spectrometry data, and tandem mass spectrometry fragmentation
patterns. Analysis of a gliotoxin standard (Fig. 1C) showed that it elutes at 3.30 min
with an accurate mass of 327.0464 Da (2.8 ppm) and has key fragments of 263.1 Da
and 245.1 Da, in accord with values reported in the literature (20).

We next analyzed A. fumigatus strain Af293 as a positive control since it is known to
biosynthesize gliotoxin (19). When A. fumigatus was grown on Czapek-Dox agar (CDA)
at 37°C (Fig. 1D), a peak with the same retention time (3.30 min), HRESIMS spectrum,
MS/MS spectrum, and accurate mass of 327.0463 (3.1 ppm) as the gliotoxin standard
was noted (Fig. ST and S2). We also detected gliotoxin production, albeit in lower
abundance, when we cultured A. fumigatus on 5% blood agar at 37°C (Fig. 1E). In
contrast, we did not observe gliotoxin production when we grew A. fumigatus on
oatmeal agar (OMA) at 37°C (Fig. S3).
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FIG 1 Aspergillus fischeri biosynthesizes gliotoxin when grown under conditions that induce A. fumigatus gliotoxin biosynthesis. (A)
Chemical structure of gliotoxin. (B) The genome of the nonpathogenic species A. fischeri strain NRRL 181 (14, 28) contains a biosynthetic
gene cluster homologous to the gliotoxin cluster in the major pathogen A. fumigatus strain Af293 (4-6). Arrows indicate genes and the
direction in which they are transcribed. Homologous genes are connected by gray parallelograms. (C to I) Chromatograms demonstrating
the biosynthesis of gliotoxin in A. fischeri when grown on CDA or blood agar at 37°C. Each sample (dried organic extract in MeOH at a
concentration of 0.2 mg/ml) was analyzed by UHPLC-HRESIMS, and the data are presented as extracted ion chromatograms (XIC) using
the protonated mass of gliotoxin (C,;H,sN,0,S,; IM+H]* = 327.0473) and a window of = 5.0 ppm. (C) Analysis of the gliotoxin standard
(in MeOH at a concentration of 0.01 mg/ml). (D) A. fumigatus grown on CDA at 37°C. (E) A. fumigatus grown on blood agar at 37°C. (F)
A. fischeri grown on CDA incubated at 37°C. (G) A. fischeri grown on blood agar incubated at 37°C. (H) A. fischeri grown on CDA at room
temperature (RT). (I) A. fischeri grown on blood agar at RT. The retention time (3.30 min) and accurate mass (327.0473 = 5.0 ppm) data
confirm the biosynthesis of gliotoxin by A. fischeri in panels F and G. NL, normalization level (i.e., base peak intensity; the larger the NL
value the better the signal to noise ratio).

To test whether A. fischeri biosynthesized gliotoxin, we grew strain NRRL 181 on the
same media and under the same temperature conditions as A. fumigatus. When A.
fischeri was grown on CDA at 37°C, we observed a peak with the same retention time
(Fig. 1F), HRESIMS spectrum (Fig. S4), and MS/MS spectrum as those observed when
analyzing our A. fumigatus extract (Fig. S5), indicating gliotoxin biosynthesis in A.
fischeri. Similarly, we detected gliotoxin production in lower abundance when we grew
A. fischeri on 5% blood agar at 37°C (Fig. 1G). In contrast, we did not observe gliotoxin
production when we grew A. fischeri on CDA or on 5% blood agar at room temperature
(Fig. 1H or |, respectively) or on oatmeal agar at 37°C (Fig. S3). These results demon-
strate that (ii) the nonpathogen A. fischeri biosynthesizes similar quantities of gliotoxin
under the same conditions that induce gliotoxin biosynthesis in the major pathogen A.
fumigatus and (i) as with what has previously been observed in A. fumigatus (21, 22),
both growth medium and temperature influence gliotoxin biosynthesis in A. fischeri.

laeA, a master regulator of secondary metabolism and A. fumigatus virulence
factor, is not a virulence factor in A. fischeri. To test whether the regulation of
secondary metabolite production contributes to the virulence profile of A. fischeri, we
deleted the endogenous copy of laeA from A. fischeri and infected larvae of the moth
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FIG 2 Deletion of the master regulator laeA in A. fischeri does not alter its virulence. Cumulative survivals
of moth (Galleria mellonella) larvae inoculated with 5 X 105 (left) or 1 X 10¢ (right) asexual spores or
conidia of either the AlaeA mutant or the wild-type (WT) A. fischeri NRRL 181 strain are shown.
Comparisons of moth cumulative survival when infected with either the AlaeA or WT strain revealed no
statistically significant differences at spore concentrations of 5 X 10° (left) or 1 X 10¢ (right) (P
value = 0.91 and 0.30, respectively; log-rank test). For the inoculations, 10 moths were infected per

group.

Galleria mellonella, a well-established invertebrate model of fungal disease (23), with
the resulting mutant strain (unpublished data). The use of G. mellonella larvae is an
appropriate model for our study for two reasons. First, our previous work revealed
consistent virulence profile differences between wild-type (WT) strains of A. fischeri and
A. fumigatus in two different murine models and in G. mellonella moth larvae (14).
Second, infection of G. mellonella larvae with A. fumigatus is known to induce gliotoxin
biosynthesis (24). We infected asexual spores (conidia) at two different concentrations
and compared the survival curves between the AlaeA mutant and the WT strain of A.
fischeri (Fig. 2). At both concentrations, our experiments showed that levels of moth
larval survival were not significantly different between the AlaeA and WT strains.

Importantly, the AlaeA strain of A. fischeri NRRL 181 is known to exhibit reduced
production of secondary metabolites under diverse conditions in a manner consistent
with the gene’s role as a master regulator of secondary metabolism (14). To confirm
that the AlaeA strain does not produce gliotoxin, we analyzed it using the same
chemical methods that showed the production of gliotoxin in the WT strain following
growth on CDA or 5% blood agar at 37°C. Unlike with the WT strain (Fig. 1F and G), we
did not observe gliotoxin production in the AlaeA strain (Fig. S3). Although the losses
of laeA and secondary metabolite, including gliotoxin, production have previously been
shown to reduce the virulence of the major pathogen A. fumigatus (11, 12), our results
suggest that the losses of laeA and secondary metabolite production (14) in A. fischeri
do not influence its virulence.

Deletion of laeA (11, 12) and gliP (8-10) results in the attenuation of A. fumigatus
virulence; in contrast, deletion or overexpression of gliZ, the transcriptional regulator of
the gliotoxin biosynthetic cluster, does not alter the virulence of A. fumigatus (25).
Dissecting the effect of gliotoxin in A. fischeri virulence through the construction of
AgliZ and AgliP mutants in multiple animal models would be an interesting follow-up
experiment, especially given that A. fumigatus AlaeA strains have previously been
shown to produce a lower, but considerable, amount of gliotoxin in vivo during murine
infection (25). However, given that the deletion of laeA does not alter A. fischeri
virulence (Fig. 2), the expectation is that specific inactivation of the gliotoxin biosyn-
thetic gene cluster would not alter the virulence profile of A. fischeri.

Concluding remarks. In this study, we show for the first time that A. fischeri, when
grown under conditions known to induce gliotoxin production in A. fumigatus, can
biosynthesize gliotoxin (Fig. 1). Furthermore, we show that an A. fischeri mutant that
lacks a master regulatory gene of secondary metabolism (laeA) does not alter the
pathogenic potential of A. fischeri (Fig. 2). Thus, it appears that secondary metabolites
are virulence factors in the genomic and phenotypic background of the pathogen A.
fumigatus but that they are much less important for virulence in the genomic back-
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ground of the nonpathogen A. fischeri. These results provide support for the “cards of
virulence” model of opportunistic fungal disease (26), in which the ability to cause
disease stems from the combination (“hand”) of individual virulence factors (“cards”).
We hypothesize that while A. fischeri possesses the cards for gliotoxin production and
secondary metabolism regulation, its cumulative hand is thankfully not a winner when
it comes to causing disease.

Fungal strains. Aspergillus fischeri strain NRRL 181 was obtained from the ARS
Culture Collection (NRRL) (14). A. fumigatus strain Af293 was also utilized as a
positive control (27).

Growth conditions. All strains were maintained on potato dextrose agar (PDA;
Difco). To establish individual cultures, an agar square along with fungal mycelium was
cut out aseptically from the leading edge of the culture and transferred onto blood agar
(tryptic soy agar with 5% sheep’s blood; Hardy Diagnostics), Czapek-Dox agar (CDA;
Difco), or oatmeal agar (OMA; Difco). All cultures at 37°C were maintained in an
incubator (VWR International) in the dark for 4 days. All cultures at room temperature
(RT; ~22°C) were kept for 2 weeks under a 12-h light/12-h dark cycle. A. fischeri was
grown on CDA (RT and 37°C), blood agar (RT and 37°C), and OMA (37°C). A. fumigatus
was grown on CDA (37°C), blood agar (37°C), and OMA (37°C).

Extraction. To evaluate the biosynthesis of gliotoxin in these fungal strains, cultures
were extracted with organic solvents and analyzed by mass spectrometry (see below).
The fungus was extracted from agar plates by spraying the fungal mycelium with
methanol (MeOH), chopping it with a spatula, and transferring the contents to a
scintillation vial. Acetone (~15ml) was then added to the scintillation vial, and the
resulting slurry was vortexed vigorously for approximately 3 min before being steeped
for 4 h at RT. Subsequently, the mixture was filtered, and the resulting material was
dried under a stream of nitrogen gas to yield the dried organic extract. Solid medium
was prepared and extracted as reported previously (14).

UHPLC-HRESIMS analysis. High-resolution electrospray ionization mass spectrom-
etry (HRESIMS) experiments utilized a Thermo LTQ Orbitrap XL mass spectrometer
(Thermo Fisher Scientific), equipped with an electrospray ionization source. This was
coupled to an Acquity ultrahigh-performance liquid chromatography (UHPLC) system
(Waters Corp.), using a flow rate of 0.3 ml/min and a bridged ethylene hybrid C,q4
column (2.1 mm by 50 mm, 1.7 um) that was operated at 40°C. The mobile phase
consisted of CH;CN-H,O (Fischer Optima LC-MS grade; both were acidified with 0.1%
formic acid). The gradient began at 15% CH;CN and increased linearly to 100% CH;CN
over 8 min, at which point it was held for 1.5 min before it was returned to starting
conditions to reequilibrate.

Extracts were analyzed in the positive-ion mode, with scanning over a mass range
of m/z 100 to 2,000 at a resolving power of 30,000. The spray voltage, source capillary,
and tube lens voltages were set to 4.0 kV, 20 V, and 100 V, respectively, with a nitrogen
sheath gas set to 30 arbitrary units (arb) and a capillary temperature at 300°C. The
fragmentation patterns (i.e., MS/MS data) were obtained by using an inclusion list
containing the mass of gliotoxin ([M+H]* = 327.047 m/z), with an isolation window
of 2Da and a collision energy of 35%. The dried organic extracts and gliotoxin
standard (Cayman Chemical Company) were prepared in MeOH at a concentration
of 0.2 mg/ml and 0.01 mg/ml, respectively, with an injection volume of 3 ul. To
eliminate the possibility for sample carryover, two blanks (MeOH) were injected
between every sample injection, and the gliotoxin standard was analyzed at the end of
the run.

Virulence studies using an invertebrate model of fungal disease (Galleria
mellonella). Virulence experiments were performed as previously described (14).
Briefly, larvae of the moth G. mellonella were obtained by breeding adult moths (23)
and selecting larvae that were similar in size (~275 to 330 mg). Prior to use, all larvae
were kept for 24 h in glass petri dishes in darkness at 37°C. Asexual spores (conidia) of
AlaeA mutant or the wild-type (WT) A. fischeri strains were obtained by growing the
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organism on a yeast extract-agar-glucose (YAG) medium for 2 days. Conidia were
harvested in phosphate-buffered saline (PBS) and filtered through Miracloth (Calbio-
chem). Conidial concentration was estimated using a hemocytometer, and conidial
viability was assessed through incubation on YAG medium at 37°C for 48 h.

For infection assays, 10 G. mellonella larvae in the final (sixth) instar larval stage of
development were used per condition. Each larva in the test group was infected with
a 5-ul inoculum of conidia from the AlaeA mutant of A. fischeri (at a concentration of
either 5 X 10° spores/ul or 1 X 10 spores/ul), whereas each larva in the control group
was inoculated with the same concentration of the WT strain of A. fischeri. All inocu-
lations were done using a Hamilton syringe (7000.5KH). All injections were performed
at the hemocoel of each larva via the last left proleg. Following inoculation, all larvae
were incubated in glass petri dishes in darkness at 37°C. Larval killing was scored daily.
Larvae were considered dead if they did not move in response to touch.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, DOCX file, 0.4 MB.
FIG S2, DOCX file, 0.3 MB.
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