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ABSTRACT

Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled
by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography,
especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools
available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates
of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the
domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of
genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including
representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient
examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and
analyze genomes of wild yeasts.
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INTRODUCTION

Recent advances in sequencing technologies, the availability of
new bioinformatic tools and multiple genomic studies during
the past five years have significantly improved our understand-
ing of the evolution, phylogeography, ecology and biotechnology
of yeasts. Although most studies have focused on the genus Sac-
charomyces, substantial progress has been achieved with other
yeasts of the phylum Ascomycota and, to a lesser extent, with
yeasts of the phylum Basidiomycota. Today, approximately one
fifth of the 1500 described yeast species have had their genomes
fully sequenced (Kurtzman, Fell and Boekhout 2011; Shen et al.
2018). In a few cases, sequences of multiple isolates are avail-
able for population genomic studies (Table S1, Supporting Infor-
mation). Historically, most studies were performed on yeast
strains isolated from anthropic environments. In recent years,
the number of yeasts from natural environments (wild yeasts)
whose genomes have been sequenced has increased rapidly, cre-
ating a new opportunity to more fully explore eukaryotic bio-
logical mechanisms. This review provides an update on recent
advances in the bioinformatics tools available for assembling,
annotating and mining yeast genomes from a broad evolution-
ary range of yeasts (Section 2). Besides the best-studied genus
Saccharomyces (Section 3), we also include other examples of out-
standing interest from the Ascomycota (Section 4.1) and Basid-
iomycota (Section 4.2), which are rising models of yeast evolu-
tion and are becoming important for specific industrial applica-
tions.

NEW BIOINFORMATIC TOOLS FOR de novo
GENOME RECONSTRUCTION AND ANALYSIS
OF YEASTS

Access to whole genome sequence data has significantly
increased in the past few years. In particular, the number of
species of yeasts of the subphylum Saccharomycotina whose
genomes have been sequenced has increased at least three-
fold (Hittinger et al. 2015; Shen et al. 2018). While these data
are more accessible, their analysis can be challenging. Non-
conventional yeasts can have ploidy variation, have high het-
erozygosity, or be natural hybrids. Although there are multiple
tools available to explore a broad range of topics in yeast evolu-
tion, integrating these tools to answer biological questions can
be daunting. Table 1 depicts a description of new bioinformatic
tools useful for genomic data processing and their respective
references.

Several tools have been developed to quantify ploidy lev-
els and detect hybrids from short-read sequencing data. Both
nQuire and sppIDer are alignment-based approaches developed
for detecting ploidy variation and hybridization events, respec-
tively. They are useful to run on raw data prior to genome assem-
bly since these factors create challenges for de novo genome
assembly programs that affect performance and increase the
frequency of assembly errors. Multiple de novo genome assembly
programs are available that can use short-reads, many of which
are available in the wrapper iWGS, including the ploidy-aware
genome assemble programs PLATANUS and dipSPAdes, which
perform well on highly heterozygous sequences. Additionally,
genome assemblies with long-reads can be performed with the
wrapper LRSDAY (Yue and Liti 2018). Prior to these phylogenetic
analyzes, the bioinformatic tool BUSCO can be used to assess

genome quality and completeness, as well as to curate a robust
set of orthologous genes to build phylogenies in programs, such
as RAxML (Shen et al. 2018). As an alternative to traditional phy-
logenetic approaches that require aligned sequences, phyloge-
netic analyzes can be performed prior to genome assembly using
AAF and SISRS. Genome annotations can be performed using
MAKER2 and YGAP. MAKER2 is a wrapper that calls multiple gene
annotation tools and makes for multiple sets of gene predictions
simultaneously, while YGAP is a web-based tool built specifically
for yeast genome annotation, especially genomes that are syn-
tenic with the model yeast Saccharomyces cerevisiae. Additionally,
HybPiper can be used to detect candidate genes that are located
in hard-to-assemble regions of the genome and does not require
genome assembly.

In recent years, DNA reassociation also referred as DNA–
DNA hybridization (DDH) has been gradually replaced by high-
throughput sequencing, which allows the in silico calculation of
overall genome related indices (OGRI) (Chun and Rainey 2014).
OGRI include any measurements indicating how similar two
genome sequences are, but they are only useful for differen-
tiating closely related species (Chun et al. 2018). Examples of
OGRI include average nucleotide identity (ANI) and digital DDH
(dDDH), which are widely used, and relevant software tools are
readily available as web-services and as standalone tools (for
a detailed list see Chun et al. 2018; Libkind et al. 2020). Other
approaches include the calculation of pairwise similarities (Kr,
with the tool genomediff of Genometools) and genome-wide align-
ments (MUMmer, Marçais et al. 2018). The resulting alignments
can be used to obtain syntenic regions, study conservation and
assist in ultra-scaffolding.

There are many bioinformatic tools and pipelines available
that are not listed here. For example, approaches have been
developed to explore gene functions (Pellegrini et al. 1999; Jones
et al. 2014), horizontal gene transfers (HGT) (Alexander et al.
2016), species phylogenetic tree inference (Shen et al. 2016) and
copy number variation (Steenwyk and Rokas 2017, 2018). Fur-
thermore, new tools are being developed regularly. The availabil-
ity of these bioinformatic tools, coupled with access to hundreds
of genomes, allows us to address a broad range of questions in
yeast genomics, evolution and genetics.

GENOMICS IN THE MODEL GENUS
Saccharomyces

The understanding of the S. cerevisiae genome has been driven
by the advent of novel-sequencing technologies. Indeed, S.
cerevisiae was the first eukaryote to be completely sequenced
(Goffeau et al. 1996) (Fig. 1). Furthermore, the development of
next-generation sequencing (NGS or 2nd generation) technolo-
gies and long-read sequencing (3rd generation) technologies,
together with bioinformatic tools (see Section 2) (Fig. 2), have
enhanced our understanding of yeast genome evolution and led
to nearly complete assemblies of the nuclear genomes of four
of the eight known Saccharomyces species. The new combined
data sets allowed the annotation of most eukaryotic genetic ele-
ments: centromeres, protein-coding genes, tRNAs, Ty retrotrans-
posable elements, core X’ elements, Y’ elements and ribosomal
RNA genes. The study of the population-scale dynamics of repet-
itive genomic regions has been relatively underexplored due to
the emphasis on short-read (< 300 bp) technologies, such as Illu-
mina sequencing. Regardless, in combination with short-read
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Figure 1. The genomes of more than three thousand Saccharomyces strains have been sequenced. At least 3077 unique Saccharomyces strains have had their genomes
sequenced using various sequencing technologies in the past 23 years (Table S1, Supporting Information). About 71.5% of the sequenced Saccharomyces strains belong
to S. cerevisiae, 11.0% are S. paradoxus, 8.5% are S. eubayanus, 5.95% are interspecies hybrids, and 2.0% are Saccharomyces uvarum. At least 105 Saccharomyces strains have
been sequenced by more than two studies (Table S1, Supporting Information). Colored circles highlight the total genome sequences published per year per technology

(symbol shape) for each Saccharomyces species or for interspecies hybrids. Bar plots represent the total number of sequenced strains from each Saccharomyces species
or interspecies hybrids, including (panel B) and excluding (panel C) S. cerevisiae strains. Bar plots are colored according to species.

Figure 2. Pros and cons of the genome sequencing methods that are currently used most widely. Pros and cons of technologies used for for de novo genome assembly

and population genomics (Goodwin et al. 2015; Chen et al. 2017; Giordano et al. 2017; Istace et al. 2017). CLR: continuous long read; CC, circular consensus; 4mC,
N4-methylcytosine; 5mC, 5-methylcytosine; 6 mA, N6-methyladenine; Kb, kilobase.

data sets, new long-read technologies are beginning to unravel
the differences in Ty and other repeat content between differ-
ent Saccharomyces strains and species (Istace et al. 2017; Yue
et al. 2017; Czaja et al. 2019), including their contribution to dif-
ferences in genome size between S. cerevisiae and S. paradoxus
genomes (Yue et al. 2017; Czaja et al. 2019). Assembly of sub-
telomeric regions has also benefited from combining short-read
and long-read data. A recent study comparing the evolutionary

dynamics of subtelomeric genes found that the length of sub-
telomeric regions to vary greatly (0.13–76 Kb with 0–19 genes)
and demonstrated an accelerated rate of evolution in domesti-
cated S. cerevisiae strains compared to wild S. paradoxus isolates
(Yue et al. 2017). Important traits for environmental adaptations
and phenotypic diversification can now be detected among sub-
telomeric structural variants (which can also be important in
speciation), the copy number variants can now be quantified and
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Figure 3. Genomic traits of wild, pathogenic, and domesticated Saccharomyces yeasts. Main genomic trait differences inferred from whole genome sequencing studies
between wild Saccharomyces, domesticated, and clinical S. cerevisiae strains (Table S1, Supporting Information). Heterozygosity is represented as the percentage of
heterozygous sites in the genome. Arrows (→) indicate the introgression/HGT direction inferred. Arrow (↑) indicates an increase in copy number. ADY, active dry yeast;
CNVs, copy number variants; HGT, horizontal gene transfer; LOF, loss of function; POF, phenolic off-flavor; SNPs, single nucleotide polymorphisms; Sacc, Saccharomyces;

Scer: S. cerevisiae; Spar, S. paradoxus; Sjur, S. jurei; Suva, S. uvarum; Seub, S. eubayanus; Efae, Enterococcus faecium; Tmic, Torulospora microellipsoides; Zbai, Zygosaccharomyces

bailii; Lthe, Lachance thermotolerans; PB, Patagonia B; PA, Patagonia A; NA, North America; HOL, Holarctic.

localized (e.g. those observed in the CUP1 gene and ARR cluster)
and the presence and absence of metabolic genes can be accu-
rately assessed (McIlwain et al. 2016; Yue et al. 2017; Naseeb et al.
2018; Steenwyk and Rokas 2018).

Mitochondrial genome sequence assemblies have also been
missing from most Illumina sequencing studies, except in a
handful studies (Baker et al. 2015; Wu, Buljic and Hao 2015; Sulo
et al. 2017). In contrast, long-read technologies better capture
and facilitate the assembly of mitochondrial genome sequences
(Wolters, Chiu and Fiumera 2015; Giordano et al. 2017; Yue et al.
2017). Similarly, despite the fitness disadvantages of possessing
the 2μ plasmids (1.5%–3% growth rate disadvantage compared
to cured cells) (Mead, Gardner and Oliver 1986), few genome
sequencing studies explicitly comment about the recovery of 2μ
plasmid sequences (Baker et al. 2015; Strope et al. 2015; McIlwain
et al. 2016; Peter et al. 2018).

Genomic differences among wild, pathogenic and
domesticated Saccharomyces strains

The importance of S. cerevisiae for a multitude of industrial
processes, such as making wine, ale beers, biofuels, sake
and bread, has greatly influenced genome sequencing efforts,
including in other Saccharomyces species. Indeed, more 2500 S.
cerevisiae strains have been sequenced, including many that
were independently sequenced by different labs (Fig. 1). These
efforts have helped differentiate the genome characteristics of
wild, pathogenic/clinical and domesticated S. cerevisiae strains

(Fig. 3). However, it has also been necessary to increase isolation
efforts of other Saccharomyces species to generalize the genomic
traits found in wild S. cerevisiae strains to other species where
all or most known strains are wild. In contrast to wild strains,
pathogenic/clinical strains and domesticated strains are both
associated with humans. Wild and human-associated strains
differ for several genomic characteristics: (i) low heterozygos-
ity in wild isolates, suggesting high-inbreeding rates (Magwene
et al. 2011; Wohlbach et al. 2014; Leducq et al. 2016; Peris et al.
2016; Duan et al. 2018; Naseeb et al. 2018; Peter et al. 2018; Nespolo
et al. 2019; Langdon et al. 2019b); (ii) fewer admixed strains from
the wild, supporting low levels of outcrossing (Liti et al. 2009;
Almeida et al. 2014; Leducq et al. 2016; Peris et al. 2016; Eber-
lein et al. 2019); (iii) the rarity of wild interspecies hybrids [cur-
rently only one is known (Barbosa et al. 2016)], suggesting lim-
ited opportunities or low fitness for interspecies hybrids in wild
environments (Fig. 3); (iv) strong geographic structure of wild
Saccharomyces populations (Hittinger et al. 2010; Almeida et al.
2014; Gayevskiy 2015; Leducq et al. 2016; Peris et al. 2016; Duan
et al. 2018; Peter et al. 2018), which highlights the limited influ-
ence of humans on the expansion of wild strains and (v) more
copy number variants (CNVs), especially in subtelomeric genes
and more aneuploidies in domesticated lineages (Gallone et al.
2016; Gonçalves et al. 2016; Steenwyk and Rokas 2017). In addi-
tion, wild strains have evolved mainly by accumulating SNPs,
whereas domesticated and clinical samples are more prone to
Ty element and gene family expansions (Peter et al. 2018). How-
ever, there are common genomic characteristics among wild and
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human-associated strains: (i) 75% genes not found in a refer-
ence genome are located in subtelomeric regions and are often
related to flocculation, nitrogen metabolism, carbon metabolism
and stress (Bergström et al. 2014; Steenwyk and Rokas 2017); (ii)
subtelomeric regions are hotspots of gene diversity, which influ-
ences traits (McIlwain et al. 2016; Yue et al. 2017) and (iii) loss-of-
function (LOF) mutations usually occur in non-essential genes
and are more frequently found in regions closer to the 3’ end of
protein-coding sequences (Bergström et al. 2014).

Several HGT events have been described in Saccharomyces,
including several specific examples that are well supported
(Fig. 3) (Hall and Dietrich 2007; Novo et al. 2009; Galeote et al. 2010;
League, Slot and Rokas 2012; Marsit et al. 2015; Peter et al. 2018).
Nonetheless, caution is warranted for cases built solely using
automated BLAST analysis, which can lead to premature con-
clusions for two main reasons. First, the absence of published
genome sequences for most species make the unequivocal iden-
tification of donor and recipient species or clades challenging.
Second, gene presence and absence variation of a horizontally
acquired gene within or between species can mislead the infer-
ence of the history of a gene if population or species sampling is
insufficient or biased. For example, large gene families found in
subtelomeric regions are particularly prone to being identified
as involved in HGT events using simple BLAST criteria due
to cryptic paralogy. In these cases, the fact that a gene’s best
BLAST hit is to a distant species may just be due to missing
data. For these reasons, we recommend using BLAST-based
statistics, such as Alien Index (Alexander et al. 2016; Wisecaver
et al. 2016), to identify interesting candidates, followed by
explicit gene tree-species tree reconciliation and phylogenetic
topology testing to evaluate candidate HGT events (Alexander
et al. 2016; Wisecaver et al. 2016; Shen et al. 2018). Furthermore,
the identification of HGT events, as well as more accurate
identification of donors and recipients, will greatly benefit from
the completion of comprehensive whole genome sequencing
projects from diverse species, such as the Y1000 + Project
(Hittinger et al. 2015; Shen et al. 2018). In summary, a combi-
nation of improved genome sampling and formal phylogenetic
approaches together provides the best path forward to generat-
ing robust inferences about which genes have been horizontally
acquired.

Genomic insights into the fascinating phylogeography
of the wild lager-brewing yeast ancestor, Saccharomyces
eubayanus

The yeast species S. eubayanus has been isolated exclusively
from wild environments; yet, hybridizations between S. cere-
visiae and S. eubayanus were key innovations that enabled cold
fermentation and lager brewing (Libkind et al. 2011; Gibson and
Liti 2015; Hittinger, Steele and Ryder 2018; Baker and Hittinger
2019; Mertens et al. 2019; Langdon et al. 2019a). Industrial isolates
of S. uvarum, the sister species of S. eubayanus, with genomic con-
tributions from S. eubayanus have also been frequently obtained
from wine and cider (Almeida et al. 2014; Nguyen and Boekhout
2017; Langdon et al. 2019a), indicating that this species has long
been playing a role in shaping many fermented products. Even
so, pure strains of S. eubayanus have only ever been isolated from
the wild. This association with both wild and domesticated envi-
ronments makes S. eubayanus an excellent model where both
wild diversity and domestication can be investigated.

Saccharomyces eubayanus was initially discovered in 2011 in
Patagonia (Argentina) from locally endemic tree species of the
genus Nothofagus (Libkind et al. 2011). Since then, it has received

much attention for brewing applications and as a model for
understanding the evolution, ecology and population genomics
of the genus Saccharomyces (Sampaio 2018). Many new glob-
ally distributed isolates have been found in different parts of
the world since its discovery (Bing et al. 2014; Peris et al. 2014;
Rodrı́guez et al. 2014; Gayevskiy and Goddard 2016; Peris et al.
2016; Eizaguirre et al. 2018) but the abundance and genetic diver-
sity measured by multilocus genetic data is still by far highest
in Patagonia (Eizaguirre et al. 2018). Recently, two independent
investigations significantly increased the number of S. eubayanus
American isolates, mainly from Patagonia (Chile and Argentina),
and together provide the largest genomic data set for this
species with a total of 256 new draft genome sequences (Nespolo
et al. 2019; Langdon et al. 2019b). This data set confirms the previ-
ously proposed population structure (Peris et al. 2014, 2016; Eiza-
guirre et al. 2018), where two major populations were detected
(Patagonia A/Population A/PA and Patagonia B/Population B/PB),
which has been further divided into five subpopulations (PA-
1, PA-2, PB-1, PB-2 and PB-3) (Eizaguirre et al. 2018). Other
isolates from outside Patagonia belong to PB, either the PB-1 sub-
population that is also found in Patagonia (Gayevskiy and God-
dard 2016; Peris et al. 2016), or a Holarctic-specific subpopula-
tion (PB-Holarctic) that includes isolates from Tibet and from
North Carolina, USA (Bing et al. 2014; Peris et al. 2016; Brouw-
ers et al. 2019), which represents the closest known wild rel-
atives of the S. eubayanus subgenomes of lager-brewing yeasts
(Bing et al. 2014; Peris et al. 2016). Furthermore, heterosis was
recently demonstrated in a S. cerevisiae x Tibetan S. eubayanus
hybrid, which showed that regulatory cross talk between the two
subgenomes is partly responsible for maltotriose and maltose
consumption (Brouwers et al. 2019). Multilocus data suggested
that two more lineages from China, West China and Sichuan,
diverged very early from all other known S. eubayanus strains,
while Holarctic isolates from China had unusually low sequence
diversity (Bing et al. 2014). In this way, S. eubayanus can be sub-
divided into a total of eight non-admixed subpopulations (six
likely Patagonian–2 PA, 3 PB and 1 PB-Holarctic and 2 Asian–
1 West China and 1 Sichuan) and two admixed lineages (one
North American lineage with a broad distribution and South
American strain sympatric to the Patagonian lineages) (Lang-
don et al. 2019b). The global distribution and geographically well-
differentiated population structure of S. eubayanus is similar to
what has been observed for Saccharomyces species, such as S.
paradoxus (Leducq et al. 2014, 2016) and S. uvarum (Almeida
et al. 2014).

While this species has been easily and repeatedly isolated
from South American Nothofagus trees (Libkind et al. 2011; Eiza-
guirre et al. 2018; Nespolo et al. 2019), only a handful of iso-
lates have been recovered from trees in China, New Zealand
and North America (Bing et al. 2014; Peris et al. 2014; Gayevskiy
and Goddard 2016; 2016). These data suggest that S. eubayanus
is abundant in Patagonia but sparsely found in North America,
Asia and Australasia. Most subpopulations display isolation by
distance with genetic diversity that mostly scales with the geo-
graphic range of a subpopulation. In Patagonia, one sampling
location can harbor more genetic diversity than is found in all
of North America (Langdon et al. 2019b). The levels of diversity
found within Patagonia is further underscored by the restriction
of four subpopulations to this region, suggesting that Patagonia
is the origin of S. eubayanus diversity or at least the last com-
mon ancestor of the PA and PB-Holarctic populations, the latter
of which gave rise to lager-brewing hybrids. Different hypothe-
ses and scenarios are discussed in more depth by Langdon et al.
(2019b) and Nespolo et al. (2019).
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NON-CONVENTIONAL YEASTS WITH
NON-CONVENTIONAL GENOMES

Besides the well-studied genus Saccharomyces, more than 1500
recognized yeast species are known, which belong either to the
Ascomycota or Basidiomycota (Kurtzman, Fell and Boekhout
2011). In this section, we review the interesting stories recently
revealed through the use of genome data of two representative
genera of both respective phyla, Hanseniaspora and Phaffia.

The yeasts with the least; the reductive genome
evolution of Hanseniaspora

A hallmark of evolution in the budding yeast subphylum Saccha-
romycotina is the loss of traits and their underlying genes (Shen
et al. 2018). Arguably, the most dramatic example of reductive
evolution observed is the Hanseniaspora (Steenwyk et al. 2019),
a genus of bipolar budding, apiculate yeasts in the family Sac-
charomycodaceae. Hanseniaspora yeasts can be assigned to two
lineages, a faster-evolving one and a slower-evolving one (FEL
and SEL, respectively), which differ dramatically in their rates of
genome sequence evolution as well as in the extent and types
of genes that they have lost (Fig. 4). The types of genes lost can
be broadly ascribed to three categories: metabolism, DNA repair,
and cell-cycle.

Metabolism-related genes have been lost in both FEL and SEL.
Analysis of 45 growth traits across 332 Saccharomycotina yeasts
revealed that Hanseniaspora species can assimilate fewer carbon
substrates compared to most of their relatives (Opulente et al.
2018; Shen et al. 2018) and have lost many of the associated
genes and pathways (Steenwyk et al. 2019). Although less pro-
nounced, similar gene and trait losses have been observed in
wine strains of S. cerevisiae (Gallone et al. 2016; Steenwyk and
Rokas 2017) and are thought to be signatures of adaptation to
the wine must environment (Steenwyk and Rokas 2018). These
gene losses may play a similar role in the ecology of Hanseni-
aspora species, considering their frequent isolation from fruit
juices and fermenting musts (Cadez 2006; Kurtzman, Fell and
Boekhout 2011), which likely reflects the specialization of Hanse-
niaspora species to sugar-rich environments.

Figure 4. The evolutionary trajectories of Hanseniaspora lineages are marked by
differential rates of sequence evolution and rates of loss of metabolism, DNA
repair and cell-cycle genes. (A), There are two lineages in the budding yeast

genus Hanseniaspora: the faster-evolving and slower-evolving lineage (FEL and
SEL, respectively). The FEL has a long and thicker stem branch indicative of
higher rates of sequence evolution or higher mutation rates, whereas the SEL has

a much shorter and thinner stem branch indicative of lower rates of sequence
evolution or lower mutation rates. (B), Each lineage has lost many genes associ-
ated with metabolism, DNA repair and cell-cycle processes; squares with colors
toward the red end of the spectrum correspond to greater rates of gene loss,

whereas squares on the white end of the spectrum correspond to lower rates of
gene loss.

Hanseniaspora species, especially those in the FEL, have lost
numerous DNA repair genes spanning multiple pathways and
processes (Steenwyk et al. 2019). For example, yeasts in both
lineages have lost 14 DNA repair genes, including PHR1, which
encodes a photolyase (Sebastian, Kraus and Sancar 1990) and
MAG1, which encodes a DNA glycosylase that is part of the
base excision repair pathway (Xiao et al. 2001). However, FEL
yeasts have lost 33 additional DNA repair genes, which include
polymerases (i.e. POL4 and POL32) and numerous telomere-
associated genes, such as CDC13 (Lustig 2001). Inactivation or
loss of DNA repair genes can cause hypermutator phenotypes,
such as those observed in microbial pathogens and in human
cancers (Jolivet-Gougeon et al. 2011; Billmyre, Clancey and Heit-
man 2017; Campbell et al. 2017). In the short-term, hypermu-
tation can facilitate adaptation in maladapted populations by
increasing the chance of occurrence of beneficial mutations (e.g.
conferring drug resistance); in the long-term, however, hyper-
mutation is not a viable strategy due to the increased accu-
mulation of deleterious mutations (Ram and Hadany 2012).
Molecular evolutionary analyzes suggest that the stem lineages
of FEL and SEL yeasts were hypermutators; interestingly, the
increased mutation rates in the two stem lineages reflect the
degree of observed DNA repair gene loss in the two lineages.
The larger number of gene losses in FEL stem branch is con-
sistent with its higher mutation rate and the smaller num-
ber of gene losses in the SEL stem branch is consistent with
a lower increase in its mutation rate (Steenwyk et al. 2019).
However, the mutation rates of both FEL and SEL crown groups
(i.e. every branch after the stem) are similar to those of other
yeast lineages, consistent with evolutionary theory’s predictions
that long-term hypermutation is maladaptive (Ram and Hadany
2012; Steenwyk et al. 2019). Altogether, Hanseniaspora have lost
DNA repair genes, undergone punctuated sequence evolution,
and slowed down their overall mutation rate, despite having a
reduced DNA repair gene repertoire. Finally, Hanseniaspora yeasts
have lost genes associated with key features of the cell cycle,
including cell size control, the mitotic spindle checkpoint and
DNA-damage-response checkpoint processes, but these losses
are more pronounced in the FEL. For example, both lineages
have lost WHI5, a negative regulator of the G1/S phase tran-
sition in the cell cycle that is critical for cell size control (Jor-
gensen et al. 2002). Other gene losses are exclusive to the FEL,
such as the loss of MAD1 and MAD2, which bind to unattached
kinetochores and are required for a functional mitotic spindle
checkpoint (Heinrich et al. 2014), as well as RAD9 and MEC3,
which function in the DNA-damage-checkpoint pathway and
arrest the cell cycle in G2 (Weinert, Kiser and Hartwell 1994).
The loss of checkpoint genes is thought to contribute to bipo-
lar budding in both lineages and greater variance in ploidy, as
well as strong signatures of mutational burden due to aber-
rant checkpoint processes in FEL compared to SEL (Steenwyk
et al. 2019). These observations suggest landmark features of
cell cycle processes are absent in Hanseniaspora and warrant
future investigations into the functional consequences of these
losses.

Phaffia rhodozyma: A colorful genome from the
Basidiomycota

The orange-colored yeast Phaffia rhodozyma ( = Xanthophyl-
lomyces dendrorhous), an early diverging Agaricomycotina
(Basidiomycota), possesses multiple exceptional traits of fun-
damental and applied interest. The most relevant is the ability
to synthesize astaxanthin, a carotenoid pigment with potent
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antioxidant activity and of great value for the aquaculture
and pharmaceutical industries. Hyperpigmented mutants of P.
rhodozyma are currently being exploited biotechnologically as a
natural source of astaxanthin in aquaculture feed (Rodrı́guez-
Sáiz, De La Fuente and Barredo 2010). These mutants were
derived from an initial collection from 1976 from bark exudates
of specific tree species (e.g. Betula sp.) from the Northern Hemi-
sphere. Today, P. rhodozyma is known to have specific niches in
association with trees of mountainous regions and a worldwide
distribution comprising at least seven different genetic lineages
(David-Palma, Libkind and Sampaio 2014). One of these lineages
was obtained from Andean Patagonia (Argentina) on Nothofagus
trees, the same substrates as S. eubayanus and S. uvarum (Section
3.2) (Libkind et al. 2011), and based on genomic analyzes, Patag-
onian wild strains were recently proposed as a potential novel
variety of P. rhodozyma (Bellora et al. 2016). The 19-Mb genome of
P. rhodozyma CRUB 1149 wild Patagonian isolate was sequenced
and assembled, achieving a coverage of 57x. Analysis of its gene
structure revealed that the proportion of intron-containing
genes and the density of introns per gene in P. rhodozyma are the
highest hitherto known for fungi, having values more similar to
those found in humans than among Saccharomycotina where
intronless genes predominate. An extended analysis suggested
that this trait might be shared with other members of the order
Cystofilobasidiales (Bellora et al. 2016).

Genome mining revealed important photoprotection and
antioxidant-related genes, as well as genes involved in sex-
ual reproduction. New genomic insight into fungal homothal-
lism was obtained, including a particular arrangement of the
mating-type genes that might explain the self-fertile sexual
behavior. All known genes related to the synthesis of astaxan-
thin were annotated. Interestingly, a hitherto unknown gene
cluster potentially responsible for the synthesis of an impor-
tant UV protective and antioxidant compound (mycosporine-
glutaminol-glucoside) (Moliné et al. 2011) was found in the newly
sequenced and mycosporinogenic strain. However, this gene
cluster was absent in a strain (CBS 6938) that does not to accu-
mulate this secondary metabolite, which has potential applica-
tions in cosmetics (Colabella and Libkind 2016). Genome min-
ing also revealed an unexpected diversity of catalases and the
loss of H2O2-sensitive superoxide dismutases in P. rhodozyma.
Altogether, the P. rhodozyma genome is enriched in antioxidant
mechanisms, in particular those most effective at coping with
H2O2, suggesting that the environmental interaction with this
reactive species has definitely contributed to shaping the pecu-
liar genome of P. rhodozyma.

YEAST BIOTECHNOLOGY GETS WILD WITH
GENOMICS

The identification of new yeast strains and novel species could
offer valuable innovative opportunities for applied research by
taking advantage of traits found by bioprospecting in extreme
environments (Pretscher et al. 2018; Cubillos et al. 2019). Newly
isolated yeasts are expanding the repertoire of phenotypic diver-
sity, and therefore, the current known variation in physiolog-
ical and metabolic traits. These yeasts from extreme environ-
ments are of considerable interest in biotechnology, owing to
diverse advantages, such as: rapid growth rates at extreme tem-
peratures, (Choi, Park and Kim 2017; Yuivar et al. 2017; Cai, Gao
and Zhou 2019), extraordinary capacity of fermentation in large-
scale cultures (Choi, Park and Kim 2017; Krogerus et al. 2017)
and the production of cold-active hydrolytic enzymes (such
as lipases, proteases, cellulases and amylases) (Martorell et al.

2019). For example, the cryotolerant yeast S. eubayanus exhibits
a wide set of relevant traits appropriate for brewing, including
efficient biomass production at low temperature and production
of high levels of esters and preferred aroma compounds in beer
(Libkind et al. 2011; Hebly et al. 2015; Mertens et al. 2015; Alonso-
del-Real et al. 2017; Gibson et al. 2017; Krogerus et al. 2017). Simi-
larly, an Antarctic isolate of Wickerhamomyces anomalus has been
indicated as a high producer and secretor of glucose oxidases,
invertases and alkaline phosphatases enzymes at lower temper-
atures, decreasing the temperature requirement for their pro-
duction (Schlander et al. 2017; Yuivar et al. 2017). In this context,
the availability of new yeasts as biological and genetic resources
from the wild immediately opens new avenues, not only for
their direct utilization in industrial processes, but also to gather
and obtain new genomic data so that their genes can be inte-
grated into complex industrial systems already in use. How-
ever, the use and manipulation of these genetic resources are
restricted by the limited knowledge in terms of the molecular
basis underlying metabolic traits of industrial interest. Mining
this genomic and phenotypic diversity provides a great oppor-
tunity to pinpoint unique pathways of biotechnological impor-
tance, which can then be exported to other systems or improved
within the same genetic backgrounds. Recent advances in bioin-
formatics, quantitative genetics, systems biology and integra-
tive biology, together with the large number of new genome
sequencing projects are providing the means to address these
challenges (Liti 2015; Peter et al. 2018; Viigand et al. 2018; Cai, Gao
and Zhou 2019; Nespolo et al. 2019; Langdon et al. 2019b). Thus,
leveraging wild yeast genomes, together with other ‘multi-omic’
approaches can generate possible targets for biotechnological
applications.

Genomics can support predicting biochemical traits in organ-
isms with biotechnological potential, where the combination of
comparative genomic and physiological studies can allow key
genomic features to be inferred in non-conventional organisms
(Riley et al. 2016). Furthermore, efforts to unravel the complexity
of yeast genomes have proven successful in providing genome-
scale models that can determine their potential metabolic pro-
files (Loira et al. 2012; Lopes and Rocha 2017). These models can
be applied to new yeast genomes to predict an organism’s chem-
ical repertoire by reconstructing metabolic pathways and eluci-
dating their biotechnological potential (Wang et al. 2017). Thus
far, these approaches have been successfully applied to a sub-
set of strains in model yeasts, such as Yarrowia lipolytica (Loira
et al. 2012), S. cerevisiae (Heavner and Price 2015; Mülleder et al.
2016), and Komagataella phaffii (formerly known as Pichia pastoris)
(Saitua et al. 2017). Their utilization in novel organisms is still
in its infancy, but the integration of transcriptional regulatory
networks and metabolic networks could guide novel metabolic
engineering applications (Shen et al. 2019) to convert new yeasts
(strains or species) into potential resources for the production of
biofuels and biochemicals.

Biotechnological applications in non-conventional organ-
isms are poised to be enhanced by recent advances in genome-
editing techniques, such as CRISPR-Cas9 (Donohoue, Barrangou
and May 2018). The utilization of CRISPR-Cas9 requires whole
genome sequences so that gRNAs can be designed to specifically
target genes of interest. This system is highly effective in S.
cerevisiae and other Saccharomyces species, mostly due to their
efficient homology-directed DNA repair machinery (Akhmetov
et al. 2018; Kuang et al. 2018; Mertens et al. 2019). For example,
novel S. eubayanus strains recently isolated from Patagonia
(Rodrı́guez et al. 2014) were successfully engineered for the
lower production of phenolic off-flavors (Mertens et al. 2019).
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Interestingly, high success rates have also been reported in other
non-conventional yeasts, demonstrating the large spectrum of
genomes that can be modified using the CRISPR-Cas9 system
(Wang et al. 2017; Juergens et al. 2018; Kuang et al. 2018; Cai, Gao
and Zhou 2019; Lombardi, Oliveira-Pacheco and Butler 2019;
Maroc and Fairhead 2019). For example, CRISPR–Cas9-assisted
multiplex genome editing (CMGE) in the thermotolerant methy-
lotrophic yeast Ogataea polymorpha allowed for the introduction
of all the genes necessary for the biosynthesis of resveratrol,
along with the biosynthesis of human serum albumin and
cadaverine (Wang et al. 2017). The seemingly universal capacity
of the CRISPR-Cas9 genome-editing technique means that
many, if not all, yeasts will ultimately be susceptible to being
modified using this system. Thus, even newly isolated yeasts
and novel species could be used as microbial cell factories,
allowing the spectrum of applications and products to be
expanded.

CONCLUSIONS

The power of genomics in the study of yeast biology, evolu-
tion and biotechnology is highly dependent on the number of
genome sequences available, and this factor is currently the
main limitation for comprehensive studies. So far, studies have
focused mostly on model species or taxa of specific fundamental
or applied interest, mainly for ascomycetous yeasts. In contrast,
few projects have dealt with basidiomycetous yeast genomes,
many of which also likely harbor interesting characteristics.
The description of novel species based on complete genome
sequences is still not a trend among yeast taxonomists, prob-
ably due in part to cost and due in part to the lack of general
guidelines for this practice. A review included in this issue rep-
resents the first attempt to establish minimal advice for taxo-
nomic descriptions using whole genome sequence data for the
formal descriptions of novel yeast species (Libkind et al. 2020
submitted). As this practice becomes more widespread and the
genomic database for non-conventional yeasts grows, our abil-
ity to answer different biological questions about their history,
ecological adaptations and dynamics will increase. Even so, new
bioinformatic tools that are more user-friendly and automated
will make the power of genomics more accessible to researchers
without bioinformatic training. On the technological side, the
gradual increase in the use of long-read sequencing technolo-
gies will enable the exploration of complete or near-complete
genome assemblies, including repeats and telomeres, of non-
conventional yeasts.

Here, we provided clear examples of how our understand-
ing of many biological and evolutionary processes has been
improved by widening the spectrum of yeasts studied, especially
by including non-conventional yeasts from the wild. Emblematic
cases from the anthropogenically affected genus Saccharomyces
were addressed as an example of how genomics helped to cast
light into complex microbial domestication processes and to
detect genomic signatures of pathogenicity and domestication.
This insight would not have been possible if large genomic
data sets from wild isolates of S. cerevisiae were not available.
Similarly, the previously missing wild ancestor of lager-brewing
yeasts would have not been found if yeast explorations into pris-
tine and remote environments had not been carried out. Studies
in the less known genus Hanseniaspora, including both domes-
ticated and wild strains, revealed unexpected evolutionary
histories, with surprising and interesting modes of genome evo-
lution. The basidiomycetous yeast Phaffia rhodozyma provided
an illustrative example of the unique genomic traits that can be
found within this understudied phylum. In the future, the large

number of new yeast genomes, along with transcriptomic, pro-
teomic and other multi-omic studies, will rapidly improve our
understanding of non-conventional and indeed all organisms
at the systems level.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSYR online.
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