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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of

selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene fami-

lies with multiple homologs in 1 or more species—a phenomenon observed among several

important families of genes such as transporters and transcription factors—are often

ignored because identifying and retrieving SC-OGs nested within them is challenging. To

address this issue and increase the number of markers used in molecular evolution studies,

we developed OrthoSNAP, a software that uses a phylogenetic framework to simulta-

neously split gene families into SC-OGs and prune species-specific inparalogs. We term

SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a split-

ting and pruning procedure analogous to snapping branches on a tree. From 415,129 ortho-

logous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified

9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes,

we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs

revealed that their phylogenetic information content was similar, even in complex datasets

that contain a whole-genome duplication, complex patterns of duplication and loss, tran-

scriptome data where each gene typically has multiple transcripts, and contentious

branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used

in molecular evolution data matrices, a critical step for robustly inferring and exploring the

tree of life.

Introduction

Molecular evolution studies, such as species tree inference, genome-wide surveys of selection,

evolutionary rate estimation, measures of gene–gene coevolution, and others typically rely on
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single-copy orthologs (SC-OGs), a group of homologous genes that originated via speciation

and are present in single copy among species of interest [1–6]. In contrast, paralogs—homolo-

gous genes that originated via duplication and are often members of large gene families—are

typically absent from these studies (Fig 1). Gene families of orthologs and paralogs often

encode functionally significant proteins such as transcription factors, transporters, and olfac-

tory receptors [7–10]. The exclusion of SC-OGs from gene families has not only hindered our

understanding of their evolution and phylogenetic informativeness but is also artificially

reducing the number of gene markers available for molecular evolution studies. Furthermore,

as the number of species and/or their evolutionary divergence increases in a dataset, the num-

ber of SC-OGs decreases [11,12]; case in point, no SC-OGs were identified in a dataset of 42

plants [11]. As the number of available genomes across the tree of life continues to increase,

our ability to identify SC-OGs present in many taxa will become more challenging.

In light of these issues, several methods have been developed to account for paralogs in spe-

cific types of molecular evolution studies—for example, in species tree reconstruction [13].

Methods such as SpeciesRax, STAG, ASTRAL-PRO, and DISCO can be used to infer a species

tree from a set of SC-OGs and gene families composed of orthologs and paralogs [11,14–16].

Other methods such as PHYLDOG [17] and guenomu [18] jointly infer the species and gene

trees but require abundant computational resources, which has hindered their use for large

datasets. Other software, such as PhyloTreePruner, can conduct species-specific inparalog

trimming [19]. Agalma, as part of a larger automated phylogenomic workflow, can prune gene

trees into maximally inclusive subtrees wherein each species, strain, or organism is represented

by 1 sequence [20]. Similarly, OMA identifies subgroups of SC-OGs using graph-based cluster-

ing of sequence similarity scores [21]. Although these methods have expanded the numbers of

gene markers used in species tree reconstruction, they were not designed to facilitate the

retrieval of as broad a set of SC-OGs as possible for downstream molecular evolution studies

such as surveys of selection. Furthermore, the phylogenetic information content of these gene

families remains unknown, calling into question their usefulness.

To address this need and measure the information content of subgroups of single-copy

orthologous genes, we developed OrthoSNAP, a novel algorithm that identifies SC-OGs nested

within larger gene families via tree decomposition and species-specific inparalog pruning. We

term SC-OGs identified by OrthoSNAP as SNAP-OGs because they were retrieved using a

splitting and pruning procedure. The efficacy of OrthoSNAP and the information content of

SNAP-OGs was examined across 7 eukaryotic datasets, which include species with complex

evolutionary histories (e.g., whole-genome duplication) or complex gene sequence data (e.g.,

transcriptomes, which typically have multiple transcripts per protein-coding gene). These

analyses revealed OrthoSNAP can substantially increase the number of orthologs for down-

stream analyses such as phylogenomics and surveys of selection. Furthermore, we found that

the information content of SNAP-OGs was statistically indistinguishable from that of SC-OGs

suggesting the inclusion of SNAP-OGs in downstream analyses is likely to be as informative.

These analyses indicate that SNAP-OGs identified by OrthoSNAP hold promise for increasing

the number of markers used in molecular evolution studies, which can, in turn, be used for

constructing and interpreting the tree of life.

Results

OrthoSNAP is a novel tree traversal algorithm that conducts tree splitting and species-specific

inparalog pruning to identify SC-OGs nested within larger gene families (Fig 1C). OrthoSNAP

takes as input a gene family phylogeny and associated FASTA file and can output individual

FASTA files populated with sequences from SNAP-OGs as well as the associated Newick tree

PLOS BIOLOGY Retrieving orthologs from gene family data

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001827 October 13, 2022 2 / 22

Funding: J.L.S. and A.R. were funded by the

Howard Hughes Medical Institute through the

James H. Gilliam Fellowships for Advanced Study

program. Research in A.R.’s lab is supported by

grants from the National Science Foundation (DEB-

2110404), the National Institutes of Health/National

Institute of Allergy and Infectious Diseases (R56

AI146096 and R01 AI153356), and the Burroughs

Wellcome Fund. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: Antonis Rokas is a

scientific consultant for LifeMine Therapeutics, Inc.

Jacob L. Steenwyk is a scientific consultant for

Latch AI Inc.

https://doi.org/10.1371/journal.pbio.3001827


PLOS BIOLOGY Retrieving orthologs from gene family data

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001827 October 13, 2022 3 / 22

https://doi.org/10.1371/journal.pbio.3001827


files (Fig 2). During tree traversal, tree uncertainty can be accounted for by OrthoSNAP by col-

lapsing poorly supported branches. In a set of 7 eukaryotic datasets that contained 9,821

SC-OGs, we used OrthoSNAP to identify an additional 10,704 SNAP-OGs. Using a combina-

tion of multivariate statistics and phylogenetic measures, we demonstrate that SNAP-OGs and

SC-OGs have similar phylogenetic information content in all 7 datasets. This observation was

consistent across datasets where the identification of large numbers of SC-OGs is challenging:

flowering plants that have complex patterns of gene duplication and loss (15 SC-OGs and 653

SNAP-OGs), a lineage of budding yeasts wherein half of the species have undergone an ancient

whole-genome duplication event (2,782 SC-OGs and 1,334 SNAP-OGs), and a dataset of tran-

scriptomes where many genes are represented by multiple transcripts (390 SC-OGs and 2,087

SNAP-OGs). Lastly, similar patterns of support were observed among the 252 SC-OGs and the

1,428 SNAP-OGs in a contentious branch in the tree of life. Taken together, these results sug-

gest that OrthoSNAP is helpful for expanding the set of gene markers available for molecular

evolutionary studies, even in datasets where inference of orthology has historically been diffi-

cult due to complex evolutionary history or complex data characteristics.

SC-OGs and SNAP-OGs have similar information content

To compare SC-OGs and SNAP-OGs, we first independently inferred orthologous groups of

genes in 3 eukaryotic datasets of 24 budding yeasts (none of which have undergone whole-

genome duplication), 36 filamentous fungi (Aspergillus and Penicillium species), and 26 mam-

mals including humans, dogs, pigs, elephants, sloths, and others (S1 Table). There was varia-

tion in the number of SC-OGs and SNAP-OGs in each lineage (S1 Fig and S2 Table).

Interestingly, the ratio of SNAP-OGs: SC-OGs among budding yeasts, filamentous fungi, and

mammals was 0.83 (1,392: 1,668), 0.46 (2,035: 4,393), and 5.53 (1,775: 321), respectively, indi-

cating SNAP-OGs can substantially increase the number of gene markers in certain lineages.

The number of SNAP-OGs identified in a gene family with multiple homologs in 1 or more

species also varied (S2 Fig).

Similar orthogroup occupancy and best-fitting models of substitutions were observed

among SC-OGs and SNAP-OGs (S3 Fig and S3 Table), raising the question of whether

SC-OGs and SNAP-OGs have similar information content. To answer this, the information

content among multiple sequence alignments and phylogenetic trees from SC-OGs and SNA-

P-OGs (S4 Fig and S4 Table) was compared across 9 properties—Robinson–Foulds distance

[22], relative composition variability [23], and average bootstrap support, for example—using

multivariate analysis and statistics as well as information theory-based phylogenetic measures.

Principal component analysis enabled qualitative comparisons between SC-OGs and SNA-

P-OGs in reduced dimensional space and revealed a high degree of similarity (Figs 3 and S5).

Multivariate statistics—namely, multifactor analysis of variance—facilitated a quantitative

comparison of SC-OGs and SNAP-OGs and revealed no difference between SC-OGs and

SNAP-OGs (p = 0.63, F = 0.23, df = 1; S5 Table) and no interaction between the 9 properties

and SC-OGs and SNAP-OGs (p = 0.16, F = 1.46, df = 8). Similarly, multifactor analysis of

Fig 1. Cartoon depiction of 3 classes of paralogs: outparalogs, inparalogs, and coorthologs. (A) Paralogs refer to

related genes that have originated via gene duplication, such as genes M, N, and O. (B) Outparalogs and inparalogs

refer to paralogs that are related to one another via a duplication event that took place prior to or after a speciation

event, respectively. With respect to the speciation event that led to the split of taxa A, B, and C from D, genes M, N, and

O are outparalogs because they arose prior to the speciation event; genes O1 and O2 in taxa A, B, and C are inparalogs

because they arose after the speciation event. Species-specific inparalogs are paralogous genes observed only in 1

species, strain, or organism in a dataset, such as gene N1 and N2 in species A. Species-specific inparalogs N1 and N2 in

species A are also coorthologs of gene N in taxa B, C, and D; the same is true for inparalogs O1 and O2 from species A,

which are coorthologs of gene O from species D. (C) Cartoon depiction of SNAP-OGs identified by OrthoSNAP.

https://doi.org/10.1371/journal.pbio.3001827.g001
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variance using an additive model, which assumes each factor is independent and there are no

interactions (as observed here), also revealed no differences between SC-OGs and SNAP-OGs

(p = 0.65, F = 0.21, df = 1). Next, we calculated tree certainty, an information theory-based

measure of tree congruence from a set of gene trees, and found similar levels of congruence

among phylogenetic trees inferred from SC-OGs and SNAP-OGs (S6 Table). Taken together,

these analyses demonstrate that SC-OGs and SNAP-OGs have similar phylogenetic informa-

tion content.

We next aimed to determine if SC-OGs and SNAP-OGs have greater phylogenetic informa-

tion content than a random null expectation. Groups of genes reflecting a random null expec-

tation were constructed by randomly selecting a single sequence from representative species in

multicopy orthologous genes (hereafter referred to as Random-GGs for random combinations

Fig 2. Cartoon depiction of OrthoSNAP workflow. (A) OrthoSNAP takes as input 2 files: a FASTA file of a gene family with multiple homologs observed in 1

or more species and the associated gene family tree. The outputted file(s) will be individual FASTA files of SNAP-OGs. Depending on user arguments,

individual Newick tree files can also be outputted. (B) A cartoon phylogenetic tree that depicts the evolutionary history of a gene family and 5 SNAP-OGs

therein. While identifying SNAP-OGs, OrthoSNAP also identifies and prunes species-specific inparalogs (e.g., species2|gene2-copy_0 and species2|

gene2-copy_1), retaining only the inparalog with the longest sequence, a practice common in transcriptomics. Note, OrthoSNAP requires that sequence

naming schemes must be the same in both sequences and follow the convention in which a species, strain, or organism identifier and gene identifier are

separated by pipe (or vertical bar; “|”) character.

https://doi.org/10.1371/journal.pbio.3001827.g002
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of orthologous and paralogous groups of genes) in the budding yeast (N = 647), filamentous

fungi (N = 999), and mammalian (N = 954) datasets. Random-GGs were aligned, trimmed,

and phylogenetic trees were inferred from the resulting multiple sequence alignments. Ran-

dom-GG phylogenetic information was also calculated. Across each dataset, significant differ-

ences were observed among SC-OGs, SNAP-OGs, and Random-GGs (p< 0.001, F = 189.92,

df = 4; Multifactor ANOVA). Further examination of differences revealed Random-GGs are

significantly different compared to SC-OGs and SNAP-OGs (p< 0.001 for both comparisons;

Tukey honest significant differences (THSD) test) in the budding yeast dataset. In contrast,

SC-OGs and SNAP-OGs are not significantly different (p = 0.42; THSD). The same was also

true for the dataset of filamentous fungi and mammals—specifically, Random-GGs were sig-

nificantly different from SC-OGs and SNAP-OGs (p< 0.001 for each comparison in each

dataset; THSD), whereas SC-OGs and SNAP-OGs were not significantly different (p = 1.00 for

filamentous fungi dataset; p = 0.42 for dataset of mammals; THSD). Principal component anal-

ysis revealed Robinson–Foulds distances (a measure of tree accuracy wherein lower values rep-

resent greater tree accuracy), and relative composition variability (a measure of alignment

composition bias wherein lower values represent less compositional bias), often drove differ-

ences among Random-GGs, SC-OGs, and SNAP-OGs across the datasets. In all datasets,

SC-OGs and SNAP-OGs outperformed the null expectation in tree accuracy and were less

compositionally biased (Table 1). These findings suggest SNAP-OGs and SC-OGs are similar

in phylogenetic information content and outperform the null expectation.

Fig 3. SC-OGs and SNAP-OGs have similar phylogenetic information content. To evaluate similarities and differences between SC-OGs (orange dots) and

SNAP-OGs (blue dots), we examined each gene’s phylogenetic information content by measuring 9 properties of multiple-sequence alignments and

phylogenetic trees. We performed these analyses on 12,764 gene families from 3 datasets—24 budding yeasts (1,668 SC-OGs and 1,392 SNAP-OGs) (A), 36

filamentous fungi (4,393 SC-OGs and 2,035 SNAP-OGs) (B), and 26 mammals (321 SC-OGs and 1,775 SNAP-OGs) (C). Principal component analysis

revealed striking similarities between SC-OGs and SNAP-OGs in all 3 datasets. For example, the centroid (i.e., the mean across all metrics and genes) for

SC-OGs and SNAP-OGs, which is depicted as an opaque and larger dot, are very close to one another in reduced dimensional space. Supporting this

observation, multifactor analysis of variance with interaction effects of the 6,630 SNAP-OGs and 6,634 SC-OGs revealed no difference between SC-OGs and

SNAP-OGs (p = 0.63, F = 0.23, df = 1) and no interaction between the 9 properties and SC-OGs and SNAP-OGs (p = 0.16, F = 1.46, df = 8). Multifactor analysis

of variance using an additive model yielded similar results wherein SC-OGs and SNAP-OGs do not differ (p = 0.65, F = 0.21, df = 1). There are also very few

outliers of individual SC-OGs and SNAP-OGs, which are represented as translucent dots, in all 3 panels. For example, SNAP-OGs outliers at the top of panel C

are driven by high treeness/RCV values, which is associated with a high signal-to-noise ratio and/or low composition bias [23]; SNAP-OG outliers at the right

of panel C are driven by high average bootstrap support values, which is associated with greater tree certainty [74]; and the single SC-OG outlier observed in the

bottom right of panel C is driven by a SC-OG with a high degree of violation of a molecular clock [78], which is associated with lower tree certainty [79].

Multiple-sequence alignment and phylogenetic tree properties used in principal component analysis and abbreviations thereof are as follows: average bootstrap

support (ABS), degree of violation of the molecular clock (DVMC), relative composition variability, Robinson–Foulds distance (RF distance), alignment length

(Aln. len.), the number of parsimony informative sites (PI sites), saturation, treeness (tness), and treeness/RCV (tness/RCV). The data underlying this figure

can be found in figshare (doi: 10.6084/m9.figshare.16875904).

https://doi.org/10.1371/journal.pbio.3001827.g003
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SC-OGs and SNAP-OGs have similar performances in complex datasets

Complex biological processes and datasets pose a serious challenge for identifying markers for

molecular evolution studies. To test the efficacy of OrthoSNAP in scenarios of complex evolu-

tionary histories and datasets, we executed the same workflow described above—ortholog call-

ing, sequence alignment, trimming, tree inference, and SNAP-OG detection—on 3 new

datasets: (1) 30 plants known to have complex histories of gene duplication and loss [24–26];

(2) 30 budding yeast species wherein half of the species originated from a hybridization event

that gave rise to a whole-genome duplication followed by complex patterns of loss and duplica-

tion [27–30]; and (3) 20 choanoflagellate transcriptomes, which contain thousands more tran-

scripts than genes [31,32]; for orthology inference software, multiple transcripts per gene

appear similar to artificial gene duplicates.

Corroborating previous results, OrthoSNAP successfully identified SNAP-OGs that can

be used downstream for molecular evolution analyses. Specifically, using a species-occu-

pancy threshold of 50% in the plant, budding yeast, and choanoflagellate datasets, 653,

1,334, and 2,087 SNAP-OGs were identified, respectively (Table 2). In comparison,

Table 1. SC-OGs and SNAP-OGs are more accurate and have less compositional biases than Random-GGs.

Dataset OG type RF distance RCV

Budding yeasts SC-OGs 0.19 ± 0.12 0.19 ± 0.05

SNAP-OGs 0.18 ± 0.11 0.18 ± 0.06

Random-GGs 0.65 ± 0.27 0.27 ± 0.13

Filamentous fungi SC-OGs 0.27 ± 0.13 0.12 ± 0.05

SNAP-OGs 0.27 ± 0.12 0.12 ± 0.06

Random-GGs 0.87 ± 0.11 0.21 ± 0.13

Mammals SC-OGs 0.56 ± 0.22 0.13 ± 0.06

SNAP-OGs 0.51 ± 0.23 0.11 ± 0.07

Random-GGs 0.61 ± 0.30 0.15 ± 0.10

The first column is the dataset being examined. The second column describes the type of group of genes. The third column is the Robinson–Foulds distances, a measure

of tree distance wherein higher values reflect greater inaccuracies. The fourth column is the relative composition variability, a measure of alignment composition bias

wherein higher values indicate greater biases. In all datasets, SC-OGs and SNAP-OGs had better scores compared to a null expectation.

RCV, relative composition variability; RF, Robinson–Foulds distance; SC-OG, single-copy ortholog.

Values represent mean and standard deviations.

https://doi.org/10.1371/journal.pbio.3001827.t001

Table 2. OrthoSNAP identifies SNAP-OGs in complex datasets.

Dataset Challenge Total

OGs

SC-OGs (50% min.

occupancy

threshold)

SNAP-OGs (50%

min. occupancy

threshold)

SC-OGs (4

species min.

threshold)

SNAP-OGs (4

species min.

threshold)

Plants (N = 30) Evolutionary histories with extensive gene

duplication and loss events

83,034 15 653 200 15,854

Budding yeasts

(N = 30)

Half of the species used experienced

hybridization and whole-genome duplication

followed by extensive loss of paralogs

11,422 2,782 1,334 3,566 4,199

Choanoflagellates

(N = 20)

Transcriptomes, where often multiple

transcripts correspond to a single protein-

coding gene

274,028 390 2,087 2,438 11,556

SC-OG identification can be difficult due to complex evolutionary histories (e.g., hybridization, whole-genome duplication, and complex patterns of gene duplication

and loss such as in the datasets of budding yeasts and plants) and analytical artifacts (e.g., transcriptomes with more transcripts than genes such as the choanoflagellate

dataset). OrthoSNAP successfully identified SNAP-OGs in each dataset. Lowering the occupancy threshold of a SNAP-OG to a minimum of 4 enabled the identification

of substantially more SNAP-OGs.

https://doi.org/10.1371/journal.pbio.3001827.t002
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15 SC-OGs were identified in the plant dataset; 2,782 in the budding yeast dataset; and 390

in the choanoflagellate dataset. (Note that there are likely more SC-OGs than SNAP-OGs in

budding yeasts because their genomes are relatively small and therefore do not have as

many duplicate gene copies compared to other lineages, such as plants. Nonetheless,

OrthoSNAP still substantially increases the number of markers in a phylogenomic data

matrix.) To explore the impact of orthogroup occupancy, SNAP-OGs were also identified

using a minimum occupancy threshold of 4 taxa. This resulted in the identification of sub-

stantially more SNAP-OGs: 15,854 in plants; 4,199 in budding yeasts; and 11,556 in choano-

flagellates. Furthermore, these were substantially higher than the number of SC-OGs

identified using a minimum orthogroup occupancy of 4 taxa: 200 in plants; 3,566 in bud-

ding yeasts; and 2,438 in choanoflagellates. These findings support previous observations

that incorporating OrthoSNAP into ortholog identification workflows can substantially

increase the number of available loci.

SC-OGs and SNAP-OGs have similar patterns of support in a contentious

branch in the tree of life

To further evaluate the information content of SNAP-OGs, we compared patterns of support

among SC-OGs and SNAP-OGs in a difficult-to-resolve branch in the tree of life. Specifically,

we evaluated the support between 3 hypotheses concerning deep evolutionary relationships

among eutherian mammals: (1) Xenarthra (eutherian mammals from the Americas) and

Afrotheria (eutherian mammals from Africa) are sister to all other Eutheria [33,34]; (2)

Afrotheria are sister to all other Eutheria [35,36]; and (3) Xenarthra are sister to a clade of both

Afrotheria and Eutheria (Fig 4A). Resolution of this conflict has important implications for

understanding the historical biogeography of these organisms. To do so, we first obtained pro-

tein-coding gene sequences from 6 Afrotheria, 2 Xenarthra, 12 other Eutheria, and 8 outgroup

taxa from NCBI (S7 Table), which represent all annotated and publicly genome assemblies at

the time of this study (S8 Table). Using the protein translations of these gene sequences as

input to OrthoFinder, we identified 252 SC-OGs shared across taxa; application of OrthoS-

NAP identified an additional 1,428 SNAP-OGs, which represents a greater than 5-fold increase

in the number of gene markers for this dataset (S8 Table). There was variation in the number

of SNAP-OGs identified per orthologous group of genes (S6 Fig). The highest number of SNA-

P-OGs identified in an orthologous group of genes was 10, which was a gene family of olfac-

tory receptors; olfactory receptors are known to have expanded in the evolutionary history of

eutherian mammals [8]. The best-fitting substitution models were similar between SC-OGs

and SNAP-OGs (S7 Fig).

Two independent tests examining support between alternative hypotheses of deep evolu-

tionary relationships among eutherian mammals revealed similar patterns of support between

SC-OGs and SNAP-OGs. More specifically, no differences were observed in gene support fre-

quencies—the number of genes that support 1 of 3 possible hypotheses at a given branch in a

phylogeny—without or with accounting for single-gene tree uncertainty by collapsing

branches with low support values (p = 0.26 and p = 0.05, respectively; Fisher’s exact test with

Benjamini–Hochberg multitest correction; Fig 4B and S9 Table). A second test of single-gene

support was conducted wherein individual gene log likelihoods were calculated for each of the

3 possible topologies. The frequency of gene-wise support for each topology was determined.

No differences were observed in gene support frequency using the log likelihood approach

(p = 0.52, respectively; Fisher’s exact test). Examination of patterns of support in a contentious

branch in the tree of life using 2 independent tests revealed SC-OGs and SNAP-OGs are simi-

lar and further supports the observation that they contain similar phylogenetic information.
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In summary, 415,129 orthologous groups of genes across 7 eukaryotic datasets contained

9,821 SC-OGs; application of OrthoSNAP identified an additional 10,704 SNAP-OGs, thereby

more than doubling the number of gene markers. Comprehensive comparison of the phyloge-

netic information content among SC-OGs and SNAP-OGs revealed no differences in phyloge-

netic information content. Strikingly, this observation held true across datasets with complex

evolutionary histories and when conducting hypothesis testing in a difficult-to-resolve branch

in the tree of life. These findings suggest that SNAP-OGs may be useful for diverse studies of

molecular evolution ranging from genome-wide surveys of selection, phylogenomic investiga-

tions, gene–gene coevolution analyses, and others.

Fig 4. SC-OGs and SNAP-OGs display similar patterns of support in a contentious branch concerning deep

evolutionary relationships among eutherian mammals. (A) Two leading hypotheses for the evolutionary

relationships among Eutheria, which have implications for the evolution and biogeography of the clade, are that

Afrotheria and Xenarthra are sister to all other Eutheria (hypothesis 1; blue) and that Afrotheria are sister to all other

Eutheria (hypothesis 2; pink). The third possible, but less well-supported topology, is that Xenarthra are sister to

Eutheria and Afrotheria. (B) Comparison of gene support frequency (GSF) values for the 3 hypotheses among 252

SC-OGs and 1,428 SNAP-OGs using an α level of 0.01 revealed no differences in support (p = 0.26, Fisher’s exact test

with Benjamini–Hochberg multitest correction). Comparison after accounting for gene tree uncertainty by collapsing

bipartitions with ultrafast bootstrap approximation support lower than 75 (SC-OGs collapsed vs. SNAP-OGs

collapsed) also revealed no differences (p = 0.05; Fisher’s exact test with Benjamini–Hochberg multitest correction).

(C) Examination of the distribution of frequency of topology support using gene-wise log-likelihood scores revealed no

difference between SNAP-OGs and SC-OGs support for the 3 topologies (p = 0.52; Fisher’s exact test). The data

underlying this figure can be found in figshare (doi: 10.6084/m9.figshare.16875904).

https://doi.org/10.1371/journal.pbio.3001827.g004
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Discussion

Molecular evolution studies typically rely on SC-OGs. Recently, developed methods can inte-

grate gene families of orthologs and paralogs into species tree inference but are not designed to

broadly facilitate the retrieval of gene markers for molecular evolution analyses. Furthermore,

the phylogenetic information content of gene families of orthologs and paralogs remains

unknown. This observation underscores the need for algorithms that can identify SC-OGs

nested within larger gene families, which can, in turn, be incorporated into diverse molecular

evolution analyses, and a comprehensive assessment of their phylogenetic properties.

To address this need, we developed OrthoSNAP, a tree splitting and pruning algorithm that

identifies SNAP-OGs, which refers to SC-OGs nested within larger gene families wherein spe-

cies-specific inparalogs have also been pruned. Comprehensive examination of the phyloge-

netic information content of SNAP-OGs and SC-OGs from 7 empirical datasets of diverse

eukaryotic species revealed that their content is similar. Inclusion of SNAP-OGs increased the

size of all 7 datasets, sometimes substantially. We note that our results are qualitatively similar

to those reported recently by Smith and colleagues [37], which retrieved SC-OGs nested within

larger families from 26 primates and examined their performance in gene tree and species tree

inference. Three noteworthy differences are that we also conduct species-specific inparalog

trimming, provide a user-friendly command-line software for SNAP-OG identification, and

evaluated the phylogenetic information content of SNAP-OGs and SC-OGs across 7 diverse

phylogenomic datasets. We also note that our algorithm can account for diverse types of paral-

ogy—outparalogs, inparalogs, and species-specific inparalogs—whereas other software like

PhyloTreePruner, which only conducts species-specific inparalog trimming [19], and Agalma,

which identifies single-copy outparalogs and inparalogs [20], can account for some, but not

all, types of paralogs (S10 Table). Another difference between OrthoSNAP and other

approaches is that Agalma and PhyloTreePruner both require rooted phylogenies. In contrast,

OrthoSNAP will automatically midpoint root phylogenies or accept prerooted phylogenies as

input. Furthermore, these algorithms are not designed to handle transcriptomic data wherein

multiple transcripts per gene will be interpreted as multicopy orthologs. Thus, OrthoSNAP

allows for greater user flexibility and accounts for more diverse scenarios, leading to, at least in

some instances, the identification of more loci for downstream analyses (S8 Fig). Notably,

these software are also different from sequence similarity graph-based inferences of subgroups

of single-copy orthologous genes—such as the algorithm implemented in OMA [21]. In other

words, OrthoSNAP identifies subgroups of single-copy orthologous genes by examining evo-

lutionary histories, rather than sequence similarity values. Moreover, examination of evolu-

tionary histories facilitates the identification of species-specific inparalogs. Finally, our results,

together with other studies, demonstrate the utility of SC-OGs that are nested within larger

families [15,20,37,38].

Despite the ability of OrthoSNAP to identify additional loci for molecular evolution analy-

ses, there were instances wherein SNAP-OGs were not identified in multicopy orthologous

groups of genes. We discuss 3 reasons that contribute to why SNAP-OGs could not be identi-

fied among some genes—specifically, gene families with sequence data from <50% of the taxa;

gene families with complex evolutionary histories (for example, HGT and duplication/loss pat-

terns); and gene families with evolutionary histories that differ from the species tree (for exam-

ple, due to analytical factors, such as sampling and systematic error, or biological factors, such

as lineage sorting or introgression/hybridization [39–41]). Notably, the first reason can, but

does not always, result in inability to infer SNAP-OGs and can be, to a certain extent,

addressed (e.g., by lowering the orthogroup occupancy threshold in OrthoSNAP), whereas the

other 2 reasons are more challenging because they often result in a genuine absence of
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SC-OGs. Furthermore, the actual number of SC-OGs (either those nested within multicopy

orthologs or not) for any given group of organisms is not known, making it difficult to deter-

mine how many SNAP-OGs and SC-OGs one should expect to recover. Notably, this issue has

long challenged researchers, even when ortholog identification is performed by also taking

genome synteny into account [27].

Next, we discuss some practical considerations when using OrthoSNAP. In the present

study, we inferred orthology information using OrthoFinder [42], but several other

approaches can be used upstream of OrthoSNAP. For example, other graph-based algorithms

such as OrthoMCL and OMA [21,43] or sequence similarity-based algorithms such as ortho-

fisher [44] can be used to infer gene families. Similarly, sequence similarity search algorithms

like BLAST+ [45], USEARCH [46], and HMMER [47] can be used to retrieve homologous sets

of sequences that are used as input for OrthoSNAP. Other considerations should also be taken

during the multicopy tree inference step. For example, inferring phylogenies for all ortholo-

gous groups of genes may be a computationally expensive task. Rapid tree inference software

—such as FastTree or IQTREE with the “-fast” parameter [48,49]—may expedite these steps

(but users should be aware that this may result in a loss of accuracy in inference; [50]).

We suggest employing “best practices” when inferring groups of putatively orthologous

genes, including SNAP-OGs. Specifically, orthology information can be further scrutinized

using phylogenetic methods. Orthology inference errors may occur upstream of OrthoSNAP;

for example, SNAP-OGs may be susceptible to erroneous inference of orthology during

upstream clustering of putatively orthologous genes. One method to identify putatively spuri-

ous orthology inference is by identifying long terminal branches [51]. Terminal branches of

outlier length can be identified using the “spurious_sequence” function in PhyKIT [52]. Other

tools, such as PhyloFisher, UPhO, and other orthology inference pipelines employ similar

strategies to refine orthology inference [53–55]. Lastly, we acknowledge that future iterations

of OrthoSNAP may benefit from incorporating additional layers of information, such as

sequence similarity scores or synteny. Even though OrthoSNAP did identify SNAP-OGs in

some complex datasets where synteny has previously been very helpful, such as the budding

yeast dataset, other ancient and rapidly evolving lineages may benefit from synteny analysis to

dissect complex relationships of orthology [51,56–58].

Taken together, we suggest that OrthoSNAP is useful for retrieving single-copy orthologous

groups of genes from gene family data and that the identified SNAP-OGs have similar phylo-

genetic information content compared to SC-OGs. In combination with other phylogenomic

toolkits, OrthoSNAP may be helpful for reconstructing the tree of life and expanding our

understanding of the tempo and mode of evolution therein.

Methods

OrthoSNAP availability and documentation

OrthoSNAP is available under the MIT license from GitHub (https://github.com/JLSteenwyk/

orthosnap), PyPi (https://pypi.org/project/orthosnap), and the Anaconda cloud (https://

anaconda.org/JLSteenwyk/orthosnap). OrthoSNAP is also freely available to use via the Latch-

Bio (https://latch.bio/) cloud-based console (dedicated interface link: https://console.latch.bio/

explore/65606/info). Documentation describes the OrthoSNAP algorithm, parameters, and

provides user tutorials (https://jlsteenwyk.com/orthosnap).

OrthoSNAP algorithm description and usage

We next describe how OrthoSNAP identifies SNAP-OGs. OrthoSNAP requires 2 files as

input: one is a FASTA file that contains 2 or more homologous sequences in 1 or more species
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and the other the corresponding gene family phylogeny in Newick format. In both the FASTA

and Newick files, users must follow a naming scheme—wherein species, strain, or organism

identifiers and gene sequences identifiers are separated by a vertical bar (also known as a pipe

character or “|”)—which allows OrthoSNAP to determine which sequences were encoded in

the genome of each species, strain, or organism. After initiating OrthoSNAP, the gene family

phylogeny is first midpoint rooted (unless the user specifies the inputted phylogeny is already

rooted) and then SNAP-OGs are identified using a tree-traversal algorithm. To do so, OrthoS-

NAP will loop through the internal branches in the gene family phylogeny and evaluate the

number of distinct taxa identifiers among children terminal branches. If the number of unique

taxon identifiers is greater than or equal to the orthogroup occupancy threshold (default: 50%

of total taxa in the inputted phylogeny; users can specify an integer threshold), then all children

branches and termini are examined further; otherwise, OrthoSNAP will examine the next

internal branch. Next, OrthoSNAP will collapse branches with low support (default: 80, which

is motivated by using ultrafast bootstrap approximations [59] to evaluate bipartition support;

users can specify an integer threshold) and conduct species-specific inparalog trimming

wherein the longest sequence is maintained, a practice common in transcriptomics. However,

users can specify whether the shortest sequence or the median sequence (in the case of 3 or

more sequences) should be kept instead. Users can also pick which species-specific inparalog

to keep based on branch lengths (the longest, shortest, or median branch length in the case of

having 3 or more sequences). Species-specific inparalogs are defined as sequences encoded in

the same genome that are sister to one another or belong to the same polytomy [19]. The

resulting set of sequences is examined to determine if 1 species, strain, or organism is repre-

sented by 1 sequence and ensure these sequences have not yet been assigned to a SNAP-OG. If

so, they are considered a SNAP-OG; if not, OrthoSNAP will examine the next internal branch.

When SNAP-OGs are identified, FASTA files of SNAP-OG sequences are outputted. Users

can also output the subtree of the SNAP-OG using an additional argument.

The principles of the OrthoSNAP algorithm are also described using the following pseudocode:

FOR internal branch in midpoint rooted gene family phylogeny:

> IF orthogroup occupancy among children termini is greater than or equal to orthogroup

occupancy threshold;

>> Collapse poorly supported bipartitions and trim species-specific inparalogs;

>> IF each species, strain, or organism among the trimmed set of species, strains, or organ-

isms is represented by only one sequence and no sequences being examined have been

assigned to a SNAP-OG yet;

>>> Sequences represent a SNAP-OG and are outputted to a FASTA file

>> ELSE

>>> examine next internal branch

> ELSE

>> examine next internal branch

ENDFOR

To enhance the user experience, arguments or default values are printed to the standard

output, a progress bar informs the user of how of the analysis has been completed, and the

number of SNAP-OGs identified as well as the names of the outputted FASTA files are printed

to the standard output.
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Development practices and design principles to ensure long-term software

stability

Archival instabilities among software threatens the reproducibility of bioinformatics research

[60]. To ensure long-term stability of OrthoSNAP, we implemented previously established rig-

orous development practices and design principles [44,52,61,62]. For example, OrthoSNAP

features a refactored codebase, which facilitates debugging, testing, and future development.

We also implemented a continuous integration pipeline to automatically build, package, and

install OrthoSNAP across Python versions 3.7, 3.8, and 3.9. The continuous integration pipe-

line also conducts 57 unit and integration tests, which span 95.90% of the codebase and ensure

faithful function of OrthoSNAP.

Dataset generation

To generate a dataset for identifying SNAP-OGs and comparing them to SC-OGs, we first

identified putative groups of orthologous genes across 4 empirical datasets. To do so, we first

downloaded proteomes for each dataset, which were obtained from publicly available reposito-

ries on NCBI (S1 and S7 Tables) or figshare [51]. Each dataset varied in its sampling of

sequence diversity and in the evolutionary divergence of the sampled taxa. The dataset of 24

budding yeasts spans approximately 275 million years of evolution [51]; the dataset of 36 fila-

mentous fungi spans approximately 94 million years of evolution [63]; the dataset of 26 mam-

mals spans approximately 160 million years of evolution [64]; and the dataset of 28 eutherian

mammals—which was used to study the contentious deep evolutionary relationships among

eutherian mammals—concerns an ancient divergence that occurred approximately 160 mil-

lion years ago [65]. Putatively orthologous groups of genes were identified using OrthoFinder,

v2.3.8 [42], with default parameters, which resulted in 46,645 orthologous groups of genes

with at least 50% orthogroup occupancy (S8 Table).

To infer the evolutionary history of each orthologous group of genes, we first individually

aligned and trimmed each group of sequences using MAFFT, v7.402 [66], with the “auto”

parameter and ClipKIT, v1.1.3 [61], with the “smart-gap” parameter, respectively. Thereafter,

we inferred the best-fitting substitution model using Bayesian information criterion and evolu-

tionary history of each orthologous group of genes using IQ-TREE2, v2.0.6 [49]. Bipartition

support was examined using 1,000 ultrafast bootstrap approximations [59].

To identify SNAP-OGs, the FASTA file and associated phylogenetic tree for each gene fam-

ily with multiple homologs in 1 or more species was used as input for OrthoSNAP, v0.0.1 (this

study). Across 40,011 gene families with multiple homologs in 1 or more species in all datasets,

we identified 6,630 SNAP-OGs with at least 50% orthogroup occupancy (S1 Fig and S8 Table).

Unaligned sequences of SNAP-OGs were then individually aligned and trimmed using the

same strategy as described above. To determine gene families that were SC-OGs, we identified

orthologous groups of genes with at least 50% orthogroup occupancy and each species, strain,

or organism was represented by only 1 sequence—6,634 orthologous groups of genes were

SC-OGs.

Measuring and comparing information content among SC-OGs and

SNAP-OGs

To compare the information content of SC-OGs and SNAP-OGs, we calculated 9 properties of

multiple sequence alignments and phylogenetic trees associated with robust phylogenetic sig-

nal in the budding yeasts, filamentous fungi, and mammalian datasets (S4 Table). More specif-

ically, we calculated information content from phylogenetic trees such as measures of tree
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certainty (average bootstrap support), accuracy (Robinson–Foulds distance; [67]), signal-to-

noise ratios (treeness; [68]), and violation of clock-like evolution (degree of violation of a

molecular clock or DVMC; [69]). Information content was also measured among multiple

sequence alignments by examining alignment length and the number of parsimony-informa-

tive sites, which are associated with robust and accurate inferences of evolutionary histories

[70] as well as biases in sequence composition (RCV; [68]). Lastly, information content was

also evaluated using metrics that consider characteristics of phylogenetic trees and multiple

sequence alignments such as the degree of saturation, which refers to multiple substitutions in

multiple sequence alignments that underestimate the distance between 2 taxa [71], and tree-

ness/RCV, a measure of signal-to-noise ratios in phylogenetic trees and sequence composition

biases [68]. For tree accuracy, phylogenetic trees were compared to species trees reported in

previous studies [51,63,64]. All properties were calculated using functions in PhyKIT, v1.1.2

[52]. The function used to calculate each metric and additional information are described in

S4 Table.

Principal component analysis across the 9 properties that summarize phylogenetic informa-

tion content was used to qualitatively compare SC-OGs and SNAP-OGs in reduced dimen-

sional space. Principal component analysis, visualization, and determination of property

contribution to each principal component was conducted using factoextra, v1.0.7 [72], and

FactoMineR, v2.4 [73], in the R, v4.0.2 (https://cran.r-project.org/), programming environ-

ment. Statistical analysis using a multifactor ANOVA was used to quantitatively compare

SC-OGs and SNAP-OGs using the res.aov() function in R.

Information theory-based approaches were used to evaluate incongruence among SC-OGs

and SNAP-OGs phylogenetic trees. More specifically, we calculated tree certainty and tree cer-

tainty-all [74–76], which are conceptually similar to entropy values and are derived from

examining support among a set of gene trees and the 2 most supported topologies or all topol-

ogies that occur with a frequency of�5%, respectively. More simply, tree certainty values

range from 0 to 1 in which low values are indicative of low congruence among gene trees and

high values are indicative of high congruence among gene trees. Tree certainty and tree cer-

tainty-all values were calculated using RAxML, v8.2.10 [77].

To examine patterns of support in a contentious branch concerning deep evolutionary rela-

tionships among eutherian mammals, we calculated gene support frequencies and ΔGLS.

Gene support frequencies were calculated using the “polytomy_test” function in PhyKIT,

v1.1.2 [52]. To account for uncertainty in gene tree topology, we also examined patterns of

gene support frequencies after collapsing bipartitions with ultrafast bootstrap approximation

support lower than 75 using the “collapse” function in PhyKIT. To calculate gene-wise log like-

lihood values, partition log-likelihoods were calculated using the “wpl” parameter in

IQ-TREE2 [49], which required as input a phylogeny in Newick format that represented either

hypothesis 1, 2, or 3 (Fig 4A) and a concatenated alignment of SC-OGs and SNAP-OGs with

partition information. Thereafter, the log likelihood values were used to assign genes to the

topology they best supported. Inconclusive genes, defined as having a gene-wise log likelihood

difference of less than 0.01, were removed.

The same methodologies—orthology inference, multiple-sequence alignment, trimming,

tree inference, SNAP-OG identification, and phylogenetic information content calculations

—were also applied to 3 additional datasets that represent complex datasets. Specifically, 30

plants (with a history of extensive gene duplication and loss events), 30 budding yeast spe-

cies (15 of which experienced whole-genome duplication), and 20 choanoflagellate tran-

scriptomes (where typically multiple transcripts correspond to a single protein-coding

gene) [31,32].
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Supporting information

S1 Fig. Numbers of orthogroups, single-copy orthogroups, orthogroups with 1 or more

homologs in 1 species, and the number of SNAP-OGs identified for each dataset. (A) The

total number of orthogroups with at least 50% ortholog occupancy for each dataset. (B) The

number of single-copy orthologs (SC-OGs) for each dataset (with at least 50% taxon occu-

pancy). (C) The number of multicopy orthologs (or orthologous groups of genes wherein 1 or

more species is represented by 2 or more sequences; MC-OGs) for each dataset (with at least

50% taxon occupancy). (D) The number of SNAP-OGs identified in each dataset (with at least

50% taxon occupancy). Note that the numbers depicted in panel A reflect the sum of the num-

bers of SC-OGs and MC-OGs in panels B and C. The data underlying this figure can be found

in figshare (doi: 10.6084/m9.figshare.16875904).

(TIF)

S2 Fig. The number of SNAP-OGs identified in orthologous groups of genes with 2 or

more homologs in 1 or more species. The number of SNAP-OGs per orthologous group of

genes is depicted on the x-axis. For example, in the budding yeasts dataset, 977 gene families

had 1 SNAP-OG each. The highest number of SNAP-OGs identified in a single orthologous

group of genes in each dataset were as follows: in budding yeasts, 5 SNAP-OGs were identified

in 1 orthologous group of genes that encode transcriptional activators; in filamentous fungi, 5

SNAP-OGs were identified in each of 2 orthologous groups of genes that encode multifacilita-

tor superfamily transporters and amino acid permeases; and in mammals, 4 SNAP-OGs were

identified in each of 3 orthologous groups of genes that encode voltage-gated potassium chan-

nels, casein kinases, and a tropomyosin family of actin-binding proteins. The data underlying

this figure can be found in figshare (doi: 10.6084/m9.figshare.16875904).

(TIF)

S3 Fig. The 10 most frequent best-fitting substitutions models are similar between

SC-OGs and SNAP-OGs. The top 10 most frequently observed best-fitting substitutions mod-

els were similar between SC-OGs and SNAP-OGs among (A) 1,668 SC-OGs and 1,392 SNA-

P-OGs in budding yeasts, (B) 4,393 SC-OGs and 2,035 SNAP-OGs in filamentous fungi, and

(C) 321 SC-OGs and 1,775 SNAP-OGs in mammals. For example, the LG+F+I+G4 model was

the most frequently observed best-fitting substitution model in SC-OGs and SNAP-OGs from

budding yeasts. The data underlying this figure can be found in figshare (doi: 10.6084/m9.

figshare.16875904).

(TIF)

S4 Fig. Distributions of information content among SNAP-OGs and SC-OGs. Boxplot and

violin plot distributions of 9 properties representative of phylogenetic information are

depicted SNAP-OGs (blue) and SC-OGs (orange) in the (A) 1,668 SC-OGs and 1,392 SNA-

P-OGs in budding yeasts, (B) 4,393 SC-OGs and 2,035 SNAP-OGs in filamentous fungi, and

(C) 321 SC-OGs and 1,775 SNAP-OGs in mammals. Abbreviations are as follows: average

bootstrap support (ABS), degree of violation of the molecular clock (DVMC), relative compo-

sition variability, Robinson-Foulds distance (RF distance), alignment length (Aln. len.), the

number of parsimony informative sites (PI sites), saturation, treeness (tness), and treeness/

RCV (tness/RCV). The data underlying this figure can be found in figshare (doi: 10.6084/m9.

figshare.16875904).

(TIF)

S5 Fig. Quality of representation and contributions of properties of phylogenetic informa-

tion content during principal component analysis. Principal component analysis was used
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to qualitatively compare the similarities and differences between SNAP-OGs and SC-OGs (Fig

3). The leftmost figure in each panel of budding yeasts (A), filamentous fungi (B), and mam-

mals (C) represents the quality of representation for each property across all principal compo-

nents. The next 2 figures depict the contribution of each property (or variable) to the first and

second dimension in reduced dimensional space. The red dashed line represents equal contri-

butions from each variable. The data underlying this figure can be found in figshare (doi: 10.

6084/m9.figshare.16875904).

(TIF)

S6 Fig. The number of SNAP-OGs identified in an orthologous group of genes with 2 or

more homologs in 1 or more species for the dataset used to examine a contentious branch

in the tree of life. The number of SNAP-OGs per orthologous group of genes is depicted on

the x-axis. For example, a single SNAP-OG was identified in 1,330 gene families with 2 or

more homologs in 1 or more species, whereas 4 SNAP-OGs were identified in 2 gene families

with 2 or more homologs in 1 or more species. The data underlying this figure can be found in

figshare (doi: 10.6084/m9.figshare.16875904).

(TIF)

S7 Fig. The 10 most frequently observed best-fitting substitutions models are similar

between SC-OGs and SNAP-OGs in the dataset used to examine a contentious branch in

the tree of life. Similar best-fitting substitutions models were observed between 252 SC-OGs

and 1,428 SNAP-OGs in a dataset of mammals, which was used to investigate patterns of sup-

port in a contentious branch in the tree of life concerning deep evolutionary relationships

among placental mammals. The data underlying this figure can be found in figshare (doi: 10.

6084/m9.figshare.16875904).

(TIF)

S8 Fig. Cartoon comparison of different tree decomposition algorithms. Using the phylog-

eny presented in Fig 1B (panel A) and Fig 2B (panel B), different tree decomposition algo-

rithms are compared. (A) OrthoSNAP will identify 4 SNAP-OGs, whereas DISCO and the

maximally inclusive strategies will each identify 3 subgroups of orthologous genes. PhyloTree-

Pruner will not identify any subgroups of single-copy orthologous genes. (B) OrthoSNAP will

identify 5 subgroups of single-copy orthologous genes (light blue) by identifying maximally

inclusive subgroups—subtrees where each taxon is represented by a single sequence—and

maximally inclusive subgroups after species-specific inparalog trimming (species-specific

inparalogs are shown in orange). In contrast, DISCO and maximally inclusive strategies will

identify 3 SC-OGs, in part, because they do not account for species-specific inparalogs. Phylo-

TreePruner, which only prunes species-specific inparalogs, will not identify any subgroups of

single-copy orthologous genes due to the presence of more ancient duplication events.

(TIF)

S1 Table. Species and accession numbers for proteomes used in each dataset. This table

details the species used for the budding yeasts, filamentous fungi, and mammalian datasets. All

proteomes from budding yeasts were downloaded from Shen and colleagues [51]. Proteomes

from filamentous fungi and mammals were downloaded from NCBI, and their accessions and

assembly names are provided.

(XLSX)

S2 Table. Number of orthogroups examined. A table of the number of orthogroups, the

number of SC-OGs, the number of gene families with orthologs and paralogs (MC-OGs), and
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the number of SNAP-OGs examined in the present study.

(XLSX)

S3 Table. Ortholog occupancy for each dataset. A table summarizing the average and stan-

dard deviation of taxon completeness in SC-OGs and SNAP-OGs.

(XLSX)

S4 Table. Nine properties of phylogenetic information content. Phylogenetic information

content of SC-OGs and SNAP-OGs were examined using the 9 properties described here. The

abbreviation, description, additional notes, and function in PhyKIT used to calculate each

property are listed here.

(XLSX)

S5 Table. Multifactor analysis of variance results reveals no substantial differences between

SC-OGs and SNAP-OGs. Degree of freedom, sum of squares, mean square, F-value, and p-

value for multifactorial analysis of variance are shown here. Multifactorial analysis of variance

was conducting accounting for potential interaction effects as well as using an additive model,

which does not account for interaction effects.

(XLSX)

S6 Table. Tree certainty and tree certainty-all results. Examining tree certainty and tree cer-

tainty-all revealed similar levels of incongruence among gene trees inferred using SC-OGs and

SNAP-OGs.

(XLSX)

S7 Table. Dataset for examining deep evolutionary relationships among eutherian mam-

mals. The NCBI accession, assembly name, name in files, and ingroup/outgroup designations

are detailed here for each proteome used.

(XLSX)

S8 Table. Number of orthogroups examined among eutherian mammals. A table of the

number of orthogroups, the number of SC-OGs, the number of gene families with orthologs

and paralogs (MC-OGs), and the number of SNAP-OGs examined among eutherian mam-

mals.

(XLSX)

S9 Table. Gene support frequency results among ancient eutherian mammalian relation-

ships. Gene support frequency results reveal similar levels of support between the 3 hypotheses

concerning deep evolutionary divergences among mammals. Multitest corrected p-values are

also shown here.

(XLSX)

S10 Table. Comparison between different algorithms that identify subgroups of ortholo-

gous genes or conduct species-specific inparalog trimming. Notably, OrthoSNAP provides

the most user flexibility and handles the most use cases.

(XLSX)
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