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A B S T R A C T

Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate struc-
tures among some taxa and genes. Two non-vertical modes of evolution – hybridization/introgression and 
horizontal gene transfer – deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, 
these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, poten-
tially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring 
organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the 
timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how hori-
zontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify 
pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, 
and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for un-
derstanding the timing and rates of evolutionary events, providing a clearer view of life’s history.

1. Introduction

Phylogenomics – phylogenetic analysis using genome-scale data – 
has been used to infer the evolutionary history of diverse lineages across 
the Tree of Life, including animals, fungi, plants, bacteria, archaea, and 
viruses (Dunn et al. 2008; Misof et al. 2014; Wickett et al. 2014; Wor-
obey et al. 2016; Simion et al. 2017; Parks et al. 2018; Shen et al. 2018; 
One Thousand Plant Transcriptomes Initiative 2019; Zhu et al. 2019; 
Coleman et al. 2021; Galindo et al. 2021; Li et al. 2021; Tahon et al. 
2021). These studies have resolved numerous phylogenetic contro-
versies, deepening our understanding of life’s history (Capella-Gutiérrez 
et al. 2012; King and Rokas 2017; Williams et al. 2019; Pipes et al. 2021; 
Steenwyk et al. 2023 Jun 27). Phylogenomics has also proven useful for 
delineating lineage relationships at taxonomic scales ranging from 
species to higher-order taxa (Díaz-Tapia et al., 2017; Muñoz-Gómez 
et al. 2017; Mateo-Estrada et al. 2019; Bringloe et al. 2021; Steenwyk, 
Balamurugan, et al. 2022; Sierra-Patev et al. 2023). Species trees 
inferred using phylogenomics provide the framework for comparative 
evolutionary genomic studies, such as determining gene duplication and 
loss events or studying phenotypic innovation (G. Zhang et al. 2014; 
Steenwyk, Opulente, et al. 2019; Fernández and Gabaldón 2020; Shen 

et al. 2020; Phillips et al. 2021; Li et al. 2022 Nov; Opulente et al. 2023; 
Title et al. 2024).

Incongruence between the evolutionary histories of single loci and 
organisms (locus-tree-species-tree incongruence or discordance) can 
arise from various biological processes (Steenwyk et al. 2023 Jun 27). 
This includes two processes of reticulate evolution – hybridization/ 
introgression and horizontal gene transfer – that are so categorized 
because they involve genetic exchange among distinct evolutionary 
lineages. In contrast, incongruence can also be caused by several within- 
lineage processes, including incomplete lineage sorting, recombination, 
and gene conversion. The purpose of this review is to outline methods of 
detecting and distinguishing the phylogenomic incongruence patterns 
that arise from reticulate (among-lineage) evolutionary processes as 
distinct from those that arise from within-lineage processes. We will first 
define these reticulate processes and then outline a full phylogenomic 
workflow for diagnosing the most likely causes of detected incongruence 
patterns.

Hybridization/introgression – the sexual interbreeding between 
divergent lineages – has been documented in plants, algae, fungi, ani-
mals, and other lineages, and can disrupt inferences of both the timing 
and pattern of historical divergences (Rieseberg et al. 2007; Neafsey 
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et al. 2010; Stukenbrock 2016; Mixão and Gabaldón 2020; Steenwyk, 
Lind, et al. 2020; Wang et al. 2022). Among humans, loci originating 
from admixture events between early humans and Neanderthals have 
been associated with adaptation, phenotypic variation, and disease risk, 
including for severe COVID-19 (Sankararaman et al. 2016; Simonti et al. 
2016; Dannemann et al. 2017; Dannemann and Kelso 2017; Zeberg and 
Pääbo 2020). Hybridization can also result in allopolyploidy wherein 
the genome of the hybrid organism encodes (nearly) the entire genome 
of both parents. Allopolyploidy has been observed in numerous plants, 
fungi, and a few vertebrates (Ozkan et al. 2001; Session et al. 2016; 
Edger et al. 2019; Steenwyk, Lind, et al. 2020; Chen et al. 2022; Session 
and Rokhsar 2023). Genome evolution in allopolyploids can be rapid – 
marked by pronounced loss of genetic material (Ozkan et al. 2001) – or 
relatively stable, resulting in retention of both parental genomes 
(Steenwyk, Lind, et al. 2020; Steenwyk et al. 2023; Salojärvi et al. 2024). 
In either case, introgression/hybridization results in novel combinations 
of genes and genetic backgrounds that can, in turn, lead to distinct 
phenotypic profiles (Steenwyk, Lind, et al. 2020; Bautista et al. 2021).

Another mode of reticulate evolution, horizontal gene transfer (or 
lateral gene transfer) – the transfer of genetic material without sexual 
reproduction – also causes discordance between locus trees and the 
organismal history. Horizontal gene transfer has been documented in 
diverse organisms, especially among prokaryotes and archaea (Galtier 
2007; Yue et al. 2012; Van Etten and Bhattacharya 2020; Arnold et al. 
2022; Gonçalves and Gonçalves 2022; Gophna and Altman-Price 2022; 
Li et al. 2022; Steenwyk et al. 2023). Horizontal gene transfer can be 
advantageous, endowing recipient organisms with potentially novel 
functionality (Gonçalves and Gonçalves 2019; Kominek et al. 2019; Li 
et al. 2022). In certain cases, complex patterns of horizontal gene 
transfer or lateral acquisition of entire gene clusters can occur, resulting 
in new metabolic capabilities such as alcohol fermentation and the 
biosynthesis of thiamine and siderophores in yeast (Gonçalves et al. 
2018; Gonçalves and Gonçalves 2019; Kominek et al. 2019). Horizon-
tally acquired genes can also facilitate adaptation to extreme environ-
ments. For example, ice-binding proteins originating from bacteria are 
thought to contribute to algal adaptation to Arctic environments 
(Dorrell et al. 2023), and mercuric reductase, an enzyme responsible for 
converting mercury to a less toxic form, was transferred from bacteria to 
extremophilic algae commonly isolated from environments with a high 
mercury concentration (Schönknecht et al. 2013). Among protists, 
approximately 1 % of gene repertoires are estimated to have been hor-
izontally acquired (Van Etten and Bhattacharya 2020). Among plants 
and animals, horizontal gene transfer events appear to be far more rare, 
but the transfer of microbial loci has been detected in some lineages (Yue 
et al. 2012; Li et al. 2022) and the exchange of transposable elements 
among lineages may be more common than previously expected 
(Osmanski et al. 2023). These observations emphasize the significance 
of horizontal gene transfer as a major evolutionary mode across the tree 
of life.

Here, we briefly outline notable steps for species tree inference – a 
common prerequisite for detecting reticulate evolution – and then 
compare methodologies for detecting and differentiating reticulate 
evolution from other biological factors contributing to incongruence 
between loci and organismal histories, such as incomplete lineage 
sorting, recombination, and gene conversion. In doing so, we aim to also 
pinpoint current considerations and identify future avenues for meth-
odological advancement in detecting reticulate evolutionary processes 
using phylogenomic data and methods. To do so, We also discuss how 
determining the relative timing of introgression/hybridization and 
horizontal gene transfer can inform the order of speciation events. For a 
more in-depth discussion of analytical sources of phylogenomic incon-
gruence and methods to mitigate them, we refer the reader to previously 
published literature (e.g., (Philippe et al. 2017; Kapli et al. 2020; 
Steenwyk et al. 2023 Jun 27)). We also acknowledge that reticulation 
encompasses several evolutionary processes and that there are existing 
literature reviews for individual topics. Thus, throughout this review, 

we point the reader to other reviews and key literature – for example, see 
(Xu 2000; Spencer et al. 2006; Keeling and Palmer 2008; Mallet et al. 
2016; Stapley et al. 2017; Lorenz and Mpaulo 2022) for articles on 
recombination, gene conversion, hybridization, horizontal gene trans-
fer, and phylogenetic analysis in the presence of reticulate processes. 
The application and development of these methods holds promise for 
unraveling the confluence of evolutionary processes that shape the Tree 
of Life.

2. Overview of a phylogenomic workflow

The first step of phylogenomic tree inference involves acquiring 
high-quality genomic/transcriptomic data from the target taxa (Fig. 1A) 
(Cheon et al. 2020; Kapli et al. 2020; Turnbull et al. 2023). We note that 
best practices for generating new sequence data involve depositing 
voucher specimens (preserved whole organisms and/or tissues) in an 
accredited biorepository for use by future researchers (Buckner et al. 
2021). Moreover, phylogenetic inference using genomes and tran-
scriptomes may require specific considerations, such as transcriptomes 
having more transcripts than genes (Cheon et al. 2020).

Thereafter, orthology inference is conducted among gene sequences 
(nucleotide or amino acid) encoded in the genomic/transcriptomic data. 
Relationships among orthologous genes can be described as one of three 
categories: one-to-one, one-to-many, and many-to-many (Fernández 
et al. 2019). Considering two haploid genomes, one-to-one orthologs are 
encoded in each genome once; one-to-many orthologs are encoded in 
one genome once and the other multiple times (implying gene dupli-
cation or loss); and many-to-many orthologs refer to a gene with mul-
tiple copies in each genome. Species tree inference often relies on one- 
to-one orthologs as phylogenomic markers because they (presumably) 
have not experienced duplication or loss (Li et al. 2017). Because phy-
logenomic markers can also be noncoding sequences, the reasoning 
extends to loci more generally, not just genes. Single-copy orthologs are 
often the substrate of many downstream molecular evolutionary ana-
lyses, such as selection measures, relative evolutionary rates, and gene- 
gene coevolution (Chikina et al. 2016; Kowalczyk et al. 2019; Steenwyk 
et al. 2021; Steenwyk, Phillips, et al. 2022; Álvarez-Carretero et al. 
2023). Alternatively, predetermined phylogenomic markers may be 
used, such as in RADseq, where restriction enzymes are used to select 
markers, or the use of near-universally single-copy genes from OrthoDB 
or similar databases (Eaton and Ree 2013; Waterhouse et al. 2018; 
Kriventseva et al. 2019).

Once a curated set of phylogenomic markers has been obtained, the 
next step is multiple sequence alignment and trimming of each marker 
individually (Fig. 1C). Multiple sequence alignment aims to determine 
the site-wise homology across a group of sequences, typically derived 
from different organisms (Katoh and Standley 2013; Sievers and Higgins 
2018; Edgar 2022). Thereafter, alignments for each marker are 
commonly subjected to trimming, which involves the removal of specific 
sites or blocks of sites within the alignments (Talavera and Castresana 
2007; Criscuolo and Gribaldo 2010; Tan et al. 2015; Steenwyk, Buida, 
et al. 2020). Next, an optimal model of sequence evolution is determined 
for each alignment for use in conducting phylogenetic inference (Kapli 
et al. 2020). The resulting single-locus phylogenies represent the infer-
red genealogical history for that locus among the sampled taxa.

Species tree inference often follows, which seeks to unite information 
from the genealogical histories among the sampled markers. Two 
commonly used approaches for species tree inference from genome-scale 
datasets are multiple sequence alignment concatenation (or simply 
concatenation) and coalescence (Fig. 1D) (Rokas et al. 2003; Liu, Yu, 
Kubatko, et al. 2009; Steenwyk et al. 2023 Jun 27). Each approach 
employs a different theoretical framework. Concatenation places the 
multiple sequence alignments from each marker end-to-end (concate-
nates them column-wise) to form a supermatrix, which then may be 
analyzed using a single model of sequence evolution or else partitioned 
with separate models for different markers or sites (e.g., third codon 
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Fig. 1. A workflow for phylogenomic inference. (A) The first step in a phylogenomic workflow is data acquisition and preparation. This often entails identifying gene 
boundaries in genome assemblies or assembling transcripts in transcriptomes. (B) The next step is to identify orthologs using (left) de novo approaches – for example, 
all-by-all sequence similarity calculations followed by graph-based clustering – or (right) from predetermined sets of orthologs. (C) Orthologous groups of genes 
suitable for phylogenomics (i.e., one-to-one orthologs and SNAP-OGs) are subsequently aligned and trimmed. (D) The resulting multiple sequence alignments can be 
(left) concatenated into a supermatrix or (right) collections of single-locus phylogenies can be used in a coalescence-based approach. (E) Support for the inferred 
phylogeny can be evaluated using multiple approaches, such as bootstrap statistics, gene support frequencies / concordance factors, and phylogenomic subsampling. 
(F) Divergence time estimates can be inferred using node dating, tip dating, or fossil-free analyses. Branch lengths represent substitutions per site in the phylogeny on 
the left and time on the right. Grey boxes in the timetree represent confidence intervals. Silhouette images were obtained from PhyloPic (https://www.phylopic. 
org/); credit goes to their respective contributors.
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positions may evolve faster than first or second positions and different 
protein domains may benefit from distinct substitution models; (Kainer 
and Lanfear 2015)). Concatenation approaches either assume that all 
locus trees reflect the same species tree or that all locus trees are inde-
pendent of each other and the species tree (Edwards et al. 2007; Gatesy 
et al. 2017). In contrast, coalescence relies on the multi-species coales-
cent model, which jointly accounts for discordance between locus trees 
and the species tree stemming from processes like incomplete lineage 
sorting (i.e., when locus histories fail to coalesce before species diver-
gence, as viewed from the present (Edwards et al. 2007)). There are two 
main coalescent-based approaches. In the one-step coalescent approach, 
single-locus phylogenies are estimated simultaneously with the species 
tree (Liu et al. 2008; Yang and Rannala 2010; Douglas et al. 2022). In 
two-step coalescent approaches, single-locus phylogenies are individu-
ally inferred and then used to construct a summary species-tree phy-
logeny (Liu, Yu, Pearl, et al. 2009; Zhang et al. 2018).

Support for the resulting phylogeny can be assessed using, for 
example, bootstrapping, single-locus or − site support frequencies (also 
known as concordance factors), and phylogenomic subsampling 
(Fig. 1E) (Edwards 2016; Zhang et al. 2018; Minh et al. 2020; Steenwyk 
et al. 2021; Steenwyk et al. 2023 Jun 27). Gene support frequencies 
coupled to concatenation tree inference can also help determine how 
common the topology is among single-locus trees. Calculations of 
internode certainty may help to determine if single-loci support one or 
more competing hypotheses (Salichos and Rokas 2013; Salichos et al. 
2014). Thus, comparing topologies from concatenation with partitioned 
loci or coalescent approaches relative to those from single-locus trees is a 
powerful method to evaluate support for a putative species tree.

Additional parameters to consider during phylogenomic inference, 
including ways to identify and ameliorate analytical sources of error, are 
reviewed elsewhere (Philippe et al. 2017; Kapli et al. 2020: 20; Steen-
wyk et al. 2023 Jun 27). Furthermore, although we focused on multiple 
sequence alignment-based phylogenomics, we acknowledge the rele-
vance of relatively new alternative data types in the phylogenomic era, 
such as synteny, retrotransposon insertion, and structure (Doronina 
et al. 2019; Moi et al. 2023; Parey et al. 2023; Schultz et al. 2023 May 17; 
Steenwyk and King 2024).

3. Reticulate Evolution: Identification and relevance of relative 
divergences

Reticulate evolutionary processes of hybridization/introgression and 
horizontal gene transfer result in loci that record different evolutionary 
histories than the whole organism (Dobzhansky 1982; Abbott et al. 
2013; Steenwyk et al. 2023 Jun 27). There are diverse outcomes for 
hybridization ranging from adaptive changes due to ecological selection 
or compromised viability or fertility due to hybrid incompatibilities 
(Racimo et al. 2015; Moran et al. 2021). For example, due to hybridi-
zation, sunflowers have adapted to novel environments and reabsorbed 
incipient species (Mallet 2005; Mallet 2008; Racimo et al. 2015; Buck 
et al. 2023). Hybrid progeny can have improved growth and reproduc-
tive success or be sterile (Zanewich et al. 2018; Qiao et al. 2019; Allen 
et al. 2020; Adavoudi and Pilot 2021). Similarly, horizontal gene 
transfer endows recipient organisms with novel genetic material and can 
be adaptive (Schönknecht et al. 2013; Gonçalves and Gonçalves 2019; 
Arnold et al. 2022; Gophna and Altman-Price 2022; Li et al. 2022; 
Dorrell et al. 2023). For example, hybridization has been observed in 
microbial pathogens and thus may contribute to higher or lower 
organismal virulence (Lin et al. 2009; Depotter et al. 2016; Mixão and 
Gabaldón 2020).

3.1. Signatures of hybridization/introgression across the genome, gene 
trees, and sites

Comparative genomic and phylogenetic methods are available for 
identifying hybridization/introgression events (Scannell et al. 2006; 

Marcet-Houben and Gabaldón 2015; Ortiz-Merino et al. 2017; Mixão 
and Gabaldón 2020; Steenwyk, Lind, et al. 2020; Steenwyk et al. 2023). 
(Note, we use the terms hybridization and introgression interchangeably 
throughout the manuscript.) In the context of allopolyploid hybrids – 
where the genome of the hybrid organism contains (nearly) the com-
plete genetic complement of both parental genomes and, therefore, two 
or more copies of most genes – ancient events can be identified by a burst 
of gene duplications and are supported by other lines of evidence such as 
synteny information (Chain et al. 2011; Marcet-Houben and Gabaldón 
2015; Session et al. 2016). For example, the allopolyploid event leading 
to the radiation of Hawaiian mints was identified by signatures of 
ancient hybridization coupled with subgenome duplication (Tomlin 
et al. 2024).

Among phylogenetic approaches, it is crucial to discriminate be-
tween incongruences among single-locus phylogenies stemming from 
hybridization between species versus incomplete lineage sorting – the 
random sorting of ancestral alleles that can, at times, result in single-loci 
with evolutionary histories distinct from the organismal history (Yu 
et al. 2013). Hybridization is favored when two nearly equally sup-
ported topologies (one of which is the species tree) are found among 
genome-wide single-locus phylogenies, which should especially be the 
case if hybridization was a recent event. Incomplete lineage sorting is 
favored when three topologies are observed equally frequently for a 
given node, especially among cases of more recent divergences (Steen-
wyk, Shen, et al. 2019); roughly equal frequency of the three topologies 
is indicative of random sorting of the ancestral alleles. The expected 
degree of incongruence stemming from incomplete lineage sorting can 
be modeled using the multispecies coalescent model. Deviations from 
that model, such as more incongruence than expected, may also be ev-
idence of a past hybridization event (Degnan and Rosenberg 2009).

Hybridization events can also be detected using frequencies of site 
patterns within a phylogenetic framework (Hibbins and Hahn 2022). For 
example, the D-statistic (or the ABBA-BABA test) is one pioneering 
approach in this area that leverages expectations about biallelic site 
patterns along a phylogeny (Fig. 2A-E) (Green et al. 2010). Specifically, 
if the ABBA-BABA test detects asymmetric support between ABBA and 
BABA patterns at biallelic sites, then an introgression/hybridization 
event is suggested; in contrast, equal proportions of ABBA and BABA site 
patterns suggest the absence of introgression/hybridization and instead 
favor incomplete lineage sorting as the primary source of incongruence. 
Leveraging genome-scale data, the ABBA-BABA test can accurately 
quantify introgression across a wide parameter space (Zheng and Janke 
2018). Variants of this test that leverage five taxa instead of four can 
further polarize the directionality of past introgression but are limited to 
symmetrical tree topologies (Eaton et al. 2015; Pease and Hahn 2015). 
ABBA-BABA and related tests benefit from a wealth of loci and, given 
that they are restricted to certain numbers of taxa, extensive locus 
sampling is important to obtain high-resolution.

Analytical factors challenge the detection of ancient hybridization/ 
introgression events using these methods, such as the inherent difficulty 
of detecting site-wise orthology and saturation by multiple substitutions. 
Evaluating the limits of these methods to ancient events remains 
underexplored and is an avenue for future research. Alternatively, new 
approaches specifically tailored for detecting ancient hybridization may 
be needed. For example, branch-length tests of hybridization may not 
work for ancient events due to asymmetric evolutionary rates through 
time. Researchers may also consider using different data types for evi-
dence of ancient hybridization, such as synteny or ancient linkage 
groups (Steenwyk and King 2024).

The signatures of introgression may also be masked at shallower 
evolutionary depths. For example, population subdivision followed by 
extensive gene flow may result in incomplete speciation events (Huang 
2020). This may result in numerous subspecies, not distinct species, such 
as the case for birds (Mayr 1999). In these cases, ecotypes or geographic 
morphs may better describe evolutionary processes at play, rather than 
speciation events (Sterner 2017; Steenwyk et al. 2024 Mar 6). These 
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caveats demonstrate how difficult it is to identify introgression between 
sister lineages. Sufficient taxon sampling of key (sub)lineages may help 
determine if introgression has occurred.

3.2. Coalescent times differ between incomplete lineage sorting and 
introgression

The degree of incomplete lineage sorting can also differ depending 
on the timing between speciation events. When speciation occurs at a 
constant tempo, with sufficient time to accumulate mutations between 
cladogenic events, incongruence stemming from incomplete lineage 
sorting is expected to be low (Rokas and Carroll 2006). In contrast, when 
speciation events occur rapidly, such as during radiation events, the 
proportion of gene trees supporting all three possible topologies of a 
rooted triplet is expected to be roughly equal (Song et al. 2023). As a 
result, differentiating between the three topologies is challenging even 
with genome-scale data, prompting some to represent such divergences 
as a polytomy (Sayyari and Mirarab 2018). Several polytomies indica-
tive of near-simultaneous radiation events have been identified in fungi 
and plants (One Thousand Plant Transcriptomes Initiative 2019; Li et al. 
2021; Steenwyk et al. 2021), harkening back to what was earlier called a 
‘star phylogeny’ with more limited data (Lara et al. 1996).

Analyses of coalescent times among single loci can help differentiate 
loci originating from introgression events compared to incomplete 
lineage sorting. In the case of incomplete lineage sorting, loci will coa-
lesce before speciation, while in the case of hybridization, loci will 
coalesce after speciation (Song et al. 2023) (Fig. 2F-I). This analysis 
relies on divergence-time analyses of single loci; however, statistical 
uncertainty can challenge these analyses due to a lack of information in 
an alignment, and differences in their underlying mutation rates (Koch 

and Carmona 2024). It is therefore strongly recommended to evaluate 
loci according to the rate of evolution and relative phylogenetic use-
fulness (Mongiardino Koch 2021). The influence of different clock 
model assumptions and time calibrations should also be systematically 
evaluated to parameterize the ‘chronospace’ of a given analysis (Smith 
et al. 2018; Mongiardino Koch 2021; Koch and Carmona 2024).

3.3. Horizontal gene transfer: high throughput screens and the 
phylogenetic gold standard

The methods employed for detecting horizontally acquired loci vary 
in precision and accuracy. Early techniques relied on identifying de-
viations in gene sequence characteristics. In the case of very recent 
prokaryote-to-eukaryote horizontal gene transfer, detection could be 
achieved by observing genes that deviate in guanine-cytosine content, 
intron content, gene order, and codon usage across the host genome 
(Friedman and Ely 2012; R. Zhang et al. 2014; Jaramillo et al. 2015; 
Gonçalves and Gonçalves 2022). In the phylogenomic era, these 
methods are often employed to support identifying horizontal gene 
transfer events rather than serving as primary detection tools.

Another approach is to conduct a high throughput screen by calcu-
lating the alien index – a score that compares the similarity between 
sequences within the target group and sequences from outgroup taxa 
(Gladyshev et al. 2008; Alexander et al. 2016) – of all genes in a host 
genome. Loci exhibiting alien indices indicative of potential horizontal 
gene transfer are then selected for further investigation through phylo-
genetic inference, the gold standard approach for horizontal gene 
transfer detection. Several software tools have been developed to 
calculate alien indices or similar metrics for assessing horizontal gene 
transfer. Examples include AvP, HGTector, and HGTphyloDetect (Zhu 

Fig. 2. Detection and differentiation of introgression/hybridization from incomplete lineage sorting. To detect introgression/hybridization in the (A) four-taxon case 
(represented as T1 through T4 where T4 is the outgroup), (B-E) the D-statistic or ABBA-BABA test can be used. (B) The orange dot represents a mutation from the 
ancestral allele ‘A’ (blue) to a derived allele ‘B’ (orange). The BBAA pattern, which is not directly accounted for in the ABBA-BABA test, is a biallelic site that follows 
the organismal phylogeny. Asymmetric patterns of ABBA and BABA biallelic site patterns suggest the occurrence of an introgression/hybridization event. The ABBA 
pattern can arise from (C) incomplete lineage sorting or (D) introgression/hybridization, whereas the (E) BABA pattern can only arise from incomplete lineage 
sorting; thus, unequal frequencies of ABBA and BABA patterns are suggestive of introgression/hybridization. (F-I) Coalescent times of loci subject to incomplete 
lineage sorting and introgression will differ. (F) Species tree depicting patterns of single-locus variation. Single locus phylogenies are also shown in panels G through 
I, wherein G and I depict incomplete lineage sort and H depicts the case of introgression. Of note, loci originating from introgression have a coalescent after 
speciation, whereas loci subject to incomplete lineage sorting coalesce before speciation. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

S. Bjornson et al.                                                                                                                                                                                                                                Molecular Phylogenetics and Evolution 201 (2024) 108197 

5 



et al. 2014; Koutsovoulos et al. 2022; Yuan et al. 2023; Yuan et al. 2023).
These tools help detect putative horizontal gene transfer events but 

there are several areas for improvement. For example, there is a relative 
scarcity of tools that use phylogenetics during high throughput identi-
fication of horizontally transferred genes. This may partly be due to the 
more extensive computational requirements needed and suite of de-
pendencies. However, doing so will help improve overall accuracy and 
make the approach more amendable to datasets of ever-increasing size. 
Orchestration of different inputs and outputs between various de-
pendencies may be achieved using workflow management systems like 
SnakeMake (Köster and Rahmann 2012). Similarly, it is difficult to 
identify horizontal gene transfer between more closely related lineages 
(such as between genera from the same class) as opposed to different 
kingdoms (such as bacteria and fungi). While direct modeling of hori-
zontal gene transfer, duplication, and loss may help distinguish hori-
zontal gene transfer from extensive gene loss, this area is ripe for 
improvement.

Phylogenetic trees that suggest horizontal gene transfer events are 
characterized by the confident placement of one or a few sequences 
within an unexpected taxonomic group (Fig. 3A and B). For instance, in 
the case of prokaryote-to-eukaryote horizontal gene transfer, sequences 
in a eukaryotic genome may be nested deep within a prokaryotic lineage 
(Coelho et al. 2013; Gonçalves et al. 2018; Husnik and McCutcheon 
2018; Shen et al. 2018; Zhou et al. 2018; Gonçalves and Gonçalves 2019; 
Kominek et al. 2019; Van Etten and Bhattacharya 2020; Irwin et al. 
2021; Li et al. 2022). The evidence for horizontal gene transfer can be 
strengthened using topology tests like the Kishino-Hasegawa and 
Shimodaira-Hasegawa tests (Kishino and Hasegawa 1989; Shimodaira 
and Hasegawa 1999). These tests compare the likelihood of a phylogeny 
constrained to reflect a vertical evolutionary scenario (the null hy-
pothesis) with the observed topology, reflecting the occurrence of hor-
izontal gene transfer (the alternative hypothesis) (Gonçalves et al. 2018; 
Shen et al. 2018).

3.4. Horizontal gene transfer events can inform relative divergences

The timing of divergences plays an important part in understanding 
the evolutionary history on earth. For example, time-calibrated phylo-
geneies have been used to identify how plant and fungal symbioses led 
to radiations in both lineages (Lutzoni et al. 2018). One relatively 
underexplored method to determine relative divergences is to compare 
patterns of horizontal gene transfer events (Davín et al. 2018; Davín 
et al. 2022). Specifically, two competing hypotheses may suggest the 
origin of one clade preceded or came after the origin of another clade 
(Fig. 3C concerning clades A and B compared to E and F, which are 
simplified as clade AB and clade EF, respectively). The robust identifi-
cation of horizontal gene transfer events between lineages of interest 
may help support one hypothesis. For example, if transfer events are 
identified between the ancestor of clade AB into the ancestor of EF, this 
would support EF diversifying before clade AB (Fig. 3D). In contrast, if a 
transfer event is identified between taxon A into the ancestor of clade 
EF, this would suggest that clade AB diversified before clade EF 
(Fig. 3E). In other words, the expectation that donor clades are older 
than recipient clades means that careful determining of horizontal gene 
transfer events across a phylogeny can help determine relative diver-
gence times.

Complex evolutionary histories among horizontally transferred loci 
may complicate the inference of relative divergences. For example, 
determining the precise origin of a horizontal gene transfer event in the 
recipient lineage can be challenging due to differential gene loss or 
pseudogenization. For example, horizontally acquired loci may be 
retained in some descendants in a recipient ancestor and lost in others. 
As a result, it will be difficult to determine at which branch in the 
organismal phylogeny a gene was acquired, introducing errors in rela-
tive divergence time estimates. Specifically, since donor lineages are 
older than recipient lineages, differential gene loss in a donor lineage 
may erroneously support a later divergence in the recipient clade. A 

Fig. 3. Signatures of a horizontal gene transfer event and their applicability to relative divergence estimation. To detect horizontal gene transfer, (A) organismal 
histories are compared to (B) single-locus phylogenies. Horizontal gene transfer is suggested when sequences are placed within an unexpected taxonomic group in 
single-locus phylogenies. Here, an example of prokaryote-to-eukaryote transfer is depicted wherein an organism from the fungal kingdom (orange) is monophyletic 
with prokaryotic sequences (blue). The horizontal gene transfer event is depicted as a grey arrow. (C) Similar horizontal gene transfer events can be used to estimate 
relative divergences, especially in lineages where horizontal gene transfer occurs sufficiently frequently. Specifically, consider the scenario of two competing 
phylogenetic hypotheses wherein the clade containing taxa E and F diverged before or after the clade with A and B (hypotheses 1 and 2 or H1 and H2, respectively). 
(D) A horizontal gene transfer event that would support H1 would involve the ancestor of A and B transferring a locus to the ancestor of E and F, whereas (E) a 
horizontal gene transfer event that would support H2 would involve the transfer of a locus to E and F from a lineage along the stem branch leading to A. In panels D 
and E, the left panel depicts the horizontal gene transfer event and the rght panel depicts the phylogenetic tree of the horizontally transferred locus. HGT is an 
abbreviation for horizontal gene transfer. Silhouette images were obtained from PhyloPic (https://www.phylopic.org/); credit goes to their respective contributors. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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similar issue can occur due to pseudogenization. Using the previous 
example, horizontal transfer into the ancestor of AB followed by the 
subsequent loss of the horizontally transferred gene in taxon B would 
erroneously support hypothesis two (Fig. 3C-E).

This method also relies on detecting enough horizontal gene transfer 
events. Certain lineages are known for having higher rates of horizontal 
gene transfer events – like cyanobacteria, archaea, and fungi. Among 
these lineages, transfers have helped determine the relative divergences 
(Davín et al. 2018). However, other lineages, such as animals, tend to 
experience fewer horizontal gene transfer events (only from some vi-
ruses and transposable elements (Osmanski et al. 2023)), raising the 
question of how many horizontal gene transfers are needed to overcome 
detection limits from differential gene loss and other factors. This 
question raises the need for further methods development.

Nonetheless, relative divergence-time estimation using horizontal 
gene transfers may be particularly helpful for lineages lacking fossils, 
such as many soft-bodied fungi and microbes. Numerous examples exist 
of horizontal gene transfer of microbial loci to lineages with well- 
established fossils, like animals and plants (Yue et al. 2012; Li et al. 
2022). In this case, horizontal gene transfers between microbial lineages 
and those with well-established fossils can help constrain the evolution 
of microbial lineages in geologic time. Such analyses may help refine the 
timing of radiations between symbiotic lineages such as plants and 
fungi, helping to establish key evolutionary episodes, including how 
fungi may have helped plants colonize land (Lutzoni et al. 2018).

3.5. Recombination and GC-biased gene conversion

Genomic shuffling by recombination can lead to regions with 
partially independent evolutionary histories (Schrempf and Szöllősi 
2020), which can cause incongruence between locus and species trees 
(Kroken and Taylor 2001). GC-rich regions typically undergo higher 
recombination rates compared to AT-rich regions because recombina-
tion is GC-based when fixing mutations resulting in increased GC con-
tent over time; this phenomenon is termed GC-biased gene conversion 
(Bossert et al. 2017). Higher levels of recombination tend to increase 
with incongruence. When combined with selection, phylogenetic signal 
decreases, leading to even more incongruence (Stott and Bobay 2020). 
Moreover, loci subject to recombination can also robustly support 
phylogenies incongruent with the species tree (Retchless and Lawrence 
2010). Other evolutionary processes may influence or be confounded by 
recombination – such as polyploidization events and horizontal gene 
transfer (Hao and Palmer 2011; Wang and Paterson 2011).

While recombination may cause single loci to differ from the species 
tree (Hsu et al. 2010; Hao et al. 2012), the influence of recombination on 
species tree inference seems minimal. For example, a simulation study 
that allowed all loci in a dataset to evolve under high levels of recom-
bination resulted in a species tree with minimal difference from a species 
tree inferred from nonrecombining data (Lanier and Knowles 2012). 
Similarly, in simulated and empirical data of prokaryotes, species trees 
inferred using core genomic regions (i.e., those found in all species/ 
strains) were generally robust to recombination (Stott and Bobay 2020). 
Recombination may partly have little impact due to the multispecies 
coalescent model assuming free recombination among loci (Mirarab 
et al. 2021).

However, recombination can negatively influence other analyses 
commonly conducted by phylogenomicists. For example, recombination 
can influence parameter estimation for Bayesian modeling of ancestral 
population sizes (Zhu et al. 2022). Similarly, recombination may also 
negatively influence coalescence time inference among loci (Hein et al. 
2004).

Accordingly, researchers may want to identify loci subject to 
recombination and purge them from datasets. One approach for iden-
tifying loci subject to recombination is calculating the pairwise homo-
plasy index (Phi). The Phi statistic tests if a locus rejects the null 
hypothesis of being nonrecombinant by examining the similarity 

between closely linked sites (Lamichhane et al. 2020). The null distri-
bution is generated by permuting sites in an alignment and evaluating 
the correlation of genealogical support between adjacent sites; in the 
absence of recombination, all sites have the same history, while 
recombination will result in variation (Bruen et al. 2006).

3.6. Phylogenetic networks for detection and visualization of reticulation

Rather than a strictly bifurcating tree, reticulate evolution can be 
represented as network-like evolutionary processes. Numerous ap-
proaches now exist for phylogenetic network reconstruction, such as 
splits networks where nodes do not necessarily correspond to hypo-
thetical ancestors and reticulate networks where internal nodes corre-
spond to ancestral taxa (Huson and Bryant 2006; Wägele and Mayer 
2007). Similarly, numerous tools exist that employ diverse methods or 
ingest different types of data, such as SplitsTree, PhyloNet, SNaQ, and 
NetRax among others (Huson 1998; Huson et al. 2007; Than et al. 2008; 
Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017; Wen et al. 2018).

Phylogenetic networks can be inferred from sequences, distances, or 
phylogenetic trees and often directly account for incomplete lineage 
sorting (Wen et al. 2018). The resulting network can also be visualized 
using different approaches. For example, in a consensus network made 
from single-locus phylogenies, all splits in a fixed number of trees will be 
depicted (Huson and Bryant 2006). This can help disentangle reticula-
tion stemming from allopolyploidy compared to introgression, since a 
stronger signal of reticulation is expected for allopolyploids. Reticula-
tion by hybridization can also be more directly tested using a hybridi-
zation network (Moret et al. 2004). Here, specific hypotheses of a 
hybridization event can be defined a priori to determine if a set of trees – 
often locus trees – support the hybridization event (Huson and Bryant 
2006). Given the need for pre-defining hypotheses, the sampling of 
distantly related taxa may not be needed, which can allow for greater 
locus sampling (Emms and Kelly 2018). While maximizing taxon sam-
pling is generally recommended for species tree inference (Pollock et al. 
2002; Steenwyk et al. 2023 Jun 27), extensive taxon sampling may not 
always be needed for tests of introgression, as long as key lineages for 
the specific hypotheses being tested are well represented.

In population studies, ancestral recombination graphs (or recombi-
nation networks) can be inferred from biallelic sites to detect recombi-
nation events (Lyngsø et al. 2005). Similarly, explicit hypotheses of 
recombination events may need to be pre-specified. Future de-
velopments may focus on agnostic tests for hybridization/recombina-
tion, rather than explicitly defining hypotheses to test. This may help 
identify heretofore undetected hybridization events.

Like in the reconstruction of bifurcating phylogenies, statistical un-
certainty in phylogenomic data can introduce noise, even error, during 
phylogenetic network construction. One approach to overcome this is to 
collapse poorly supported branches before network inference from 
single-locus phylogenies (Kandziora et al. 2022). Bayesian frameworks 
for network inference provide a robust approach to account for uncer-
tainty by producing posterior distributions of probable networks that 
can be used for downstream analyses (Lewanski et al. 2023 Oct 18). 
However, other methods can also be used to determine certainty in 
network topology network support, such as bootstrapping (Lutteropp 
et al. 2022).

4. Time-calibration of inferred locus- and species-tree 
divergences

Divergence times among branches in a phylogenomic analysis can be 
estimated using fossils, mutation rates, horizontal gene transfers, or 
other temporal evidence to calibrate a molecular clock model (Ho and 
Phillips 2009; Dos Reis et al. 2016; Davín et al. 2018; Dos Reis et al. 
2018; Tiley et al. 2020). This procedure converts the relative di-
vergences of molecular substitution rates to absolute time, often in units 
of thousands or millions of years ago. The resulting time-calibrated 
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phylogenies, which may be referred to as ‘timetrees’ or ‘chronograms’, 
differ from uncalibrated phylogenies (‘phylograms’) in that the former is 
comparable to other evidence that is scaled to absolute time. Timetrees 
can be used to investigate causal eco-evolutionary dynamics relative to a 
broad array of independent evidence; for example, past changes in 
global temperature versus rates of lineage divergence (Oliveros et al. 
2019; Schubert et al. 2019 May 21; S. Meseguer and Condamine 2020; 
Feijó et al. 2022), co-diversification among taxa (Sabrina Pankey et al. 
2022; Nelsen et al. 2023), and rates of speciation among related clades 
(Harvey et al. 2020; Upham et al. 2021).

Approaches to estimating divergence times can be divided into node 
dating, tip dating, and fossil-free dating. Node dating places temporal 
constraints (i.e., calibrations) on a bifurcating internal node of a phy-
logeny. In contrast, tip dating places calibrations on terminal taxa that 
existed at some time in the past (Ho and Phillips 2009; Heath et al. 
2014). The ages of serially sampled taxa – usually fossils or viruses and 
other microbes (Stadler and Yang 2013) – are the most reliable data for 
calibrating divergence times in phylogenomic datasets. Fossils and their 
associated ages can calibrate divergence times at either nodes or tips, 
typically using a probability distribution to incorporate age uncertainty 
(Ho and Phillips 2009; Stadler and Yang 2013). A fossil’s phylogenetic 
position relative to living members of a given clade must be inferred or 
assumed based on other data for that fossil to serve as a time calibration 
(Parham et al. 2012). Viruses and other microbes evolve rapidly enough 
that samples collected in the last few decades offer valuable tip cali-
brations analogous to the role of fossils in longer-lived mammals or 
plants (Volz et al. 2013; Andréoletti et al. 2022). The resulting ‘phylo-
dynamic’ analyses can help expose the population-dynamic processes 
that generate the phylogenetic patterns inferred from phylogenomic 
datasets (Stadler et al. 2021; Andréoletti et al. 2022).

In both node and tip dating, clock models are used to extrapolate 
species divergence times from temporal constraints. Strict clock models 
assume a fixed mutation rate in all branches, which is often violated 
when comparing more distant relatives (e.g., the 2 %-per-million-years 
rate long used for bird mitochondrial genes; (Ho 2007)). Indeed, strict 
clocks may lack biological realism, so this assumption is often relaxed, 
such as in autocorrelated clock models where closely related branches 
have similar mutation rates or, in uncorrelated models where each 
branch is given an independent rate (Drummond et al. 2006; Lepage 
et al. 2007; Steenwyk and Rokas 2023). Relaxed clocks allow greater 
flexibility for handling the observed molecular-rate variation among 
lineages, and thus they are in wide use today for all types of time- 
calibration strategies. Multi-species coalescent dating approaches addi-
tionally leverage information about ancestral population sizes to esti-
mate species divergence times (Dos Reis et al. 2016; Dos Reis et al. 2018; 
Flouri et al. 2022). Such coalescent dating approaches can be quite ac-
curate when mutation rates are known from pedigrees (Tiley et al. 
2020), and appear to be robust to small amounts of introgression in 
phylogenomic datasets (Huang et al. 2020; Tiley et al. 2023).

What if no fossils or other serial samples are available for a particular 
taxon? Two main options exist to calibrate divergences: use a fixed, 
strict clock model to project estimates back from tips, or use secondary 
calibrations derived from previous analyses. Secondary calibrations 
typically apply the divergence times estimated at a larger phylogenetic 
scale (from primary fossil or rate calibrations) for a sister taxon or 
outgroup, which can be used to calibrate the root node for a clade of 
interest (Shaul and Graur 2002). However, caution is required to avoid 
specifying overly precise secondary calibrations, given the strong as-
sumptions involved (Schenk 2016).

Choosing which software to use for divergence-time estimation in-
volves a trade-off between available compute resources and the desired 
level of biological realism. At one extreme, the most realistic models (e. 
g., BPP and StarBEAST (Flouri et al. 2018; Douglas et al. 2022)) will 
perform Bayesian inference to estimate multi-species coalescent pa-
rameters across thousands of gene genealogies, considering multiple 
rate priors, and integrating across both phylogenetic and temporal 

uncertainty to yield a posterior distribution of time-scaled trees. How-
ever, these ‘full methods’ do not scale to large numbers of taxa or distant 
relatives (Tiley et al. 2020; Jiao et al. 2021).

At the other extreme, concatenated sequence data can be used step- 
wise to first estimate the phylogenetic tree topology in units of sub-
stitutions/site, which can then be calibrated in a second step of 
divergence-time estimation. Step-wise methods most commonly use 
maximum-likelihood (e.g., r8s, treePL, RelTime; (Sanderson 2003; 
Smith and O’Meara 2012; Tao et al. 2020)), but can also be implemented 
using Bayesian inference in programs like BEAST or MrBayes, which 
often requires fixing the tree topology. Midway between these extremes 
is the use of concatenated sequence data to perform simultaneous esti-
mation of topology and divergence times, generally as implemented in a 
Bayesian framework (e.g., BEAST, MCMCtree, MrBayes, PhyloBayes, 
RevBayes). This latter approach has been implemented in large datasets 
(e.g., 800 taxa by 40,000 sites; (Upham et al. 2019)), and continues to be 
aided by GPU-based computing libraries (Ayres et al. 2019). Strategies 
for setting node-age priors can strongly impact divergence-time esti-
mation and are thus a further key consideration, particularly since such 
analyses generally assume the monophyly of all time-constrained nodes 
(Barba-Montoya et al. 2017).

During divergence time estimation, a range of plausible dates is 
typically returned under the model’s experimental conditions. Thus, 
divergence-time results are communicated using confidence intervals, 
often of the middle 95 % (from 2.5 % to 97.5 % of the resultant distri-
bution). Divergence times can also be inferred using a bootstrapping 
approach for intractably large datasets (Liu et al. 2023). However, any 
divergence times communicated without a confidence interval should be 
viewed with caution given the strong assumptions involved in choosing 
a point estimate (Huelsenbeck et al. 2000). Overall, the choices of node, 
tip, or fossil-free dating and strict or relaxed clocks depend on the 
question of interest, available molecular and morphological data, and 
prevalence of locus-tree-species-tree incongruence.

5. Conclusion

This review explores how to infer a species tree and subsequently 
detect reticulate evolutionary processes and date divergence events 
within phylogenomic datasets. We expect that future research avenues 
will seek to improve upon these methods in five main ways.

First, for detecting horizontal gene transfer, improvements in high- 
throughput tree-based methods will reduce the number of phyloge-
netic trees that need to be (semi)manually inspected and pruned from 
collections of putatively horizontally transferred genes. Currently, the 
alien index is relied upon for high-throughput screening, but it is prone 
to false positives and thus does not scale well to phylogenomic data. 
Methods for detecting horizontal gene transfer that can scale to large 
phylogenomic datasets of 1,000 + taxa will be especially useful given 
the current exponential rise in published genomes (Chen et al. 2021).

Second, for detecting introgression, site-based approaches like the 
ABBA-BABA test will continue to be valuable among recently diverged 
species or populations, but model-based approaches are needed to test 
for hybridization at more ancient nodes where substitution saturation is 
expected (Swofford et al. 2001; Hibbins and Hahn 2022). Building on 
earlier methods for single loci (Huson et al. 2005), the node-by-node 
frequency of topologies discordant with the species tree will be 
skewed to one topology in cases of ancient hybridization whereas 
incomplete lineage sorting will yield two equally represented discordant 
topologies. Several studies have generated their own pipelines for 
analyzing sliding genomic windows to find signatures of ancient hy-
bridization in this way (e.g., in butterflies, fruit flies, and mammals 
(Edelman et al. 2019; Suvorov et al. 2022; Foley et al. 2023)). However, 
high-throughput and general-purpose tools for these tests are needed. 
One promising approach is to examine potential signatures of intro-
gression using synteny-based analyses (e.g., maps of gene order and 
recombination rate (Bredemeyer et al. 2023)). Developing automated, 
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high-throughput methods for accurate introgression detection from 
phylogenomic datasets containing hundreds to thousands of taxa will 
illuminate the general prevalence of introgression across the Tree of Life.

Fourth, for dating divergence events using single loci, improvements 
in the accuracy of dates will help differentiate incomplete lineage sort-
ing from introgression, given the expectation that introgressed loci will 
coalesce more recently than the corresponding species-tree divergence. 
Doing so will require confident inferences of per-locus substitution rates 
across genomic windows of different sizes, which is particularly difficult 
among ancient divergences, due to substitution saturation. Automated 
divergence estimation – augmented with modeling of the evolutionary 
process – will help differentiate incomplete lineage sorting and intro-
gression in the Tree of Life. Another potential area for future research is 
integration divergence time methods into phylogenetic networks.

Fifth, one method to potentially refine molecular clock models is to 
leverage long-term experimental evolution data, where mutation rates 
are known to vary (Lenski 2017; Wei et al. 2022). In other taxa, per- 
species estimates of de novo mutation rates can be obtained by trio- 
based sequencing of genomes from wild-caught mother-father- 
offspring (Bergeron et al. 2023; Suárez-Menéndez et al. 2023), which 
could be leveraged to calibrate divergence times more accurately than 
with external fossils. Such insights may improve models of the complex 
interrelationships between mutation rate, population size, natural se-
lection, and the divergence of lineages as manifested in locus-tree- 
species-tree dynamics.

Taken together, we have identified numerous considerations and 
opportunities for further research to understand how reticulate evolu-
tion can inform – and has shaped – our knowledge of the Tree of Life.
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