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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Many distantly related organisms have convergently evolved traits and lifestyles that enable

them to live in similar ecological environments. However, the extent of phenotypic conver-

gence evolving through the same or distinct genetic trajectories remains an open question.

Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049

yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota)

to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists

associated with cacti. We inferred that the ecological association of yeasts with cacti arose

independently approximatelyAU : PleasenotethatasperPLOSstyle; donotusethesymbol � inprosetomeanaboutorapproximately:}Hence; thissymbolhasbeenreplacedwith}approximately}throughoutthetext:17 times. Using a machine learning–based approach, we fur-

ther found that cactophily can be predicted with 76% accuracy from both functional genomic

and phenotypic data. The most informative feature for predicting cactophily was thermoto-

lerance, which we found to be likely associated with altered evolutionary rates of genes

impacting the cell envelope in several cactophilic lineages. We also identified horizontal

gene transfer and duplication events of plant cell wall–degrading enzymes in distantly

related cactophilic clades, suggesting that putatively adaptive traits evolved independently

through disparate molecular mechanisms. Notably, we found that multiple cactophilic spe-

cies and their close relatives have been reported as emerging human opportunistic patho-

gens, suggesting that the cactophilic lifestyle—and perhaps more generally lifestyles

favoring thermotolerance—might preadapt yeasts to cause human disease. This work

underscores the potential of a multifaceted approach involving high-throughput genomic
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Citation: Gonçalves C, Harrison M-C, Steenwyk JL,

Opulente DA, LaBella AL, Wolters JF, et al. (2024)

Diverse signatures of convergent evolution in

cactus-associated yeasts. PLoS Biol 22(9):

e3002832. https://doi.org/10.1371/journal.

pbio.3002832

Academic Editor: Sophien Kamoun, Sainsbury

Laboratory, UNITED KINGDOM OF GREAT

BRITAIN AND NORTHERN IRELAND

Received: June 22, 2024

Accepted: September 5, 2024

Published: September 23, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3002832
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and phenotypic data to shed light onto ecological adaptation and highlights how convergent

evolution to wild environments could facilitate the transition to human pathogenicity.

Introduction

Convergent evolution, the repeated evolution of similar traits among distantly related taxa, is

ubiquitous in nature and has been documented across all domains of life [1–3]. Convergence

typically arises when organisms occupy similar ecological niches or encounter similar condi-

tions and selective pressures; facing similar selective pressures, organisms from distinct line-

ages often evolve similar adaptations.

Independently evolved phenotypes often share the same genetic underpinnings (parallel

molecular evolution) [4–7], such as similar mutations in specific genes [4,5,8], but can also

arise through distinct molecular paths and by distinct evolutionary mechanisms [9,10], such as

gene duplications [11–13], gene losses [14–16], or horizontal gene transfer (HGT) events

[17,18]. Molecular signatures of convergence can also be inferred from independent shifts in

overall evolutionary rates [19] and examined at higher hierarchical levels of molecular organi-

zation, such as functions or pathways [20]. For instance, comparing rates of evolution across

distantly related animal lineages could pinpoint convergent slowly evolving genes involved in

adaptive functions [21] or convergent rapidly evolving genes indicating parallel relaxed con-

straints acting on dispensable functions [22]. Parallel molecular changes are common across

all domains of life [9], but their occurrence can be reduced by mutational epistasis or the poly-

genic nature of some phenotypic traits [10,23,24], particularly when studying convergence in

distantly related organisms.

Fungi exhibit very high levels of evolutionary sequence divergence [25]; the amino acid

sequence divergence between the baker’s yeast Saccharomyces cerevisiae and the human com-

mensal and opportunistic pathogen Candida albicans, both members of subphylum Saccharo-

mycotina (one of the 3 subphyla in Ascomycota, which is one of the more than 1 dozen fungal

phyla), is comparable to the divergence between humans and sponges [26]. Due to their very

diverse genetic makeups, convergent phenotypes arising in fungi might involve distinct genetic

determinants and/or mechanisms, including HGT [27,28], a far less common mechanism

among animals (but see [29,30]).

Saccharomycotina yeasts are ecologically diverse, occupy diverse ecosystems [31], and vary

considerably in their degree of ecological specialization ranging from cosmopolitan generalists

to ecological specialists. For instance, Sugiyamaella yeasts are mostly isolated from insects [32]

and most Tortispora species have been almost exclusively found in association with cacti plants

[33]. The cactus environment accommodates numerous yeast species rarely found in other

niches [34–37]. Moreover, cactophilic yeasts are part of a model ecological system involving

the tripartite relationship between cactus, yeast, and Drosophila [34,36,38,39]. Cactophilic

yeasts use necrotic tissues of cacti as substrates for growth [40] while serving as a food source

to cactophilic Drosophila. Cactophilic flies (and other insects) play, in turn, a crucial role in the

yeast’s life cycle by acting as vectors [34].

In Drosophila, the adoption of cacti as breeding and feeding sites evolved around 16 to 21

million years ago (Mya) and is considered one of the most extensive and successful ecological

transitions within the genus [41]. Cactophilic Drosophila thrive across a wide range of cacti

species that differ in the profiles of toxic metabolites they produce—Opuntia species, com-

monly called prickly pear cactus, generally contain fewer toxic metabolites than columnar
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cacti species [40] and are likely the ancestral hosts [41]. The distinctive characteristics of the

cacti environment [42] seemingly selected for adaptive traits across cactophilic Drosophila,

such as high resistance to heat, desiccation, and toxic alkaloid compounds produced by certain

types of cacti [43–48]. These traits are likely associated with several genomic signatures (for

instanceAU : PleasenotethatasperPLOSstyle; donotusee:g:andforinstanceinthesamepaper:Hence; allinstancesof }e:g:}havebeenreplacedwith}forinstance}toenforceconsistencythroughoutthetext:, positive selection, gene duplications, HGT) impacting multiple functions, such as

water preservation or detoxification [45–50].

Contrasting with Drosophila, where cactophily is largely found within the monophyletic D.

repleta group [41], molecular phylogenetic analyses revealed that cactophilic yeasts belong to

phylogenetically distinct clades, indicating that association with cacti evolved multiple times,

independently, in the Saccharomycotina [37]. While relevant ecological and physiological

information of cactus-associated yeasts is available [35–37,39], the genetic changes that facili-

tated the convergent evolution of multiple yeast lineages to the cacti environment are

unknown.

Benefiting from the wealth of genomic and phenotypic data available for nearly all known

yeast species described in the subphylum Saccharomycotina [51] and cross-referencing with

the ecological data available from the cactus-yeast-Drosophila system [35–37,52–60], we

employed a high-throughput framework to detect signatures of convergent evolution in 17

independently evolved lineages of cactophilic yeasts. Using a machine learning algorithm, we

uncovered distinctive phenotypic traits enriched among cactus-associated yeasts, including

the ability to grow at high (�37˚C) temperatures. We found that thermotolerance might be

related to distinctive rates of evolution in functions impacting the integrity of the cell envelope,

some of which are under positive selection in distantly related cactophilic clades. Gene family

analyses identified gene duplication and HGT events involving plant cell wall–degrading

enzymes in distinct clades, suggesting adaptations associated with feeding on plant material.

These results reveal that convergence to cactophily by distinct lineages of Saccharomycotina

yeasts was accomplished through diverse evolutionary mechanisms acting on distinct genes,

although some of these are involved in similar biological functions. Interestingly, we found

that several cactus-associated yeasts and close relatives have been reported as emerging oppor-

tunistic human pathogens raising the hypothesis that fungi inhabiting certain wild environ-

ments may be preadapted for opportunistic pathogenicity. More broadly, we advocate for a

methodological framework that couples diverse lines of genomic, phenotypic, and ecological

data with multiple analytical approaches to investigate the plurality of evolutionary mecha-

nisms underlying ecological adaptation.

Results

Yeast cactophily likely evolved independently 17 times

We examined the ecological association of yeasts with the cacti environment across a dataset

of 1,154 strains from 1,049 yeast species. Yeast-cacti associations vary substantially in their

strengths [35]. Some cactus-associated yeast species are considered cosmopolitan, being com-

monly isolated from cacti but also other environments (henceforth referred to as transient),

whereas others are strictly cactophilic, defined as those almost exclusively isolated from cacti

(S1 Table; note that this classification is based on the available ecological information, which

may be impacted by sampling bias and other sampling issues—it is possible that strictly cacto-

philic species could also be found in other, yet unsampled, environments). We observed that

strictly cactophilic species are found across almost the entire Saccharomycotina subphylum

spanning from the Trigonopsidales (i.e., Tortispora spp.) [33] to the Saccharomycetales (i.e.,

Kluyveromyces starmeri) [52] (Figs 1 and S1). Using the yeast phylogeny and distribution of
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Fig 1. Yeast cactophily originated repeatedly and at different times. (top) Genome-wide–based phylogeny of the

subphylum Saccharomycotina [51] depicting the different types of ecological association of strictly cactophilic yeast

species with the cacti environment: (necrotic) cacti tissues, which include bothOpuntia spp. and columnar cacti, cacti

flowers, and cacti-visiting insects. Cactophilic lineages and well-known yeasts, such as Saccharomyces spp. and Candida
albicans, are noted on the phylogeny. (a, b, and c) Subtrees of 3 cactophilic clades: (a) Tortispora, (b) Starmera, and (c)
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(strict) cactophily in an ancestral state reconstruction, we inferred a total of 17 origins for the

evolution of cactophily (S2 Fig).

Cactophily is found in single species belonging to different orders, but it also involves

nearly an entire genus (i.e., Tortispora). Specifically, 7 of the 17 instances of cactophily evolu-

tion involve clades containing 2 or more species while the remaining 10 involve single species,

suggesting that different taxa evolved this ecological association at different times (Figs 1 and

S1). For instance, cross-referencing relaxed molecular clock analyses of the yeast phylogeny

[51] with ancestral state reconstructions suggests that cactophily in Tortispora likely emerged

twice, once in the most recent common ancestor (MRCA) of T. starmeri/T. phaffi around 47

Mya, and in the MRCA of T. caseinolytica/T.mauiana/T. ganteri around 11 Mya (Fig 1). An

alternative hypothesis would place the emergence of cactophily in the MRCA of the Tortispora
genus around 180 Mya; however, this hypothesis is inconsistent with the estimated origin of

the Cactaceae family (35 Mya) [61]. Cactophily in the genus Starmera and in the Pichia cacto-
phila clade emerged more recently, most likely around 12 and 3 Mya, respectively (Fig 1).

We also observed that cactus-associated yeasts seemingly exhibit significant niche partition-

ing (S1 Table). For example, T. ganteri is typically isolated from columnar cacti, while its close

relative T. caseinolytica is more commonly found in Opuntia spp. [33]. Furthermore, P. cacto-
phila is considered a generalist cactophilic yeast, being widely distributed across a wide range

of cacti species [37], while closely related P. heedii has been predominantly found in associa-

tion with certain species of columnar cacti [39]. However, many species (for instance, T. star-
meri or P. insulana) alternate between the 2 types of cacti [33,58], similar to some Drosophila
species [41]. Other strictly cactophilic species, such asWickerhamiella cacticola or Kodamaea
nitidulidarum, are associated with cacti flowers and/or flower-visiting insects, like beetles, and

not with necrotic cacti tissues [59,60,62].

Detecting signatures of convergent evolution in cactophilic yeasts

We envision 3 distinct scenarios that may capture how different yeast lineages convergently

evolved cactophily (Fig 2A):

Scenario I: Convergent phenotypes and genotypes

Selective pressures associated with the cacti environment (for instance, high temperature,

desiccation, or presence of toxic compounds) favor similar phenotypic traits that evolved

through the same genomic mechanisms;

Scenario II: Convergent phenotypes through divergent genotypes

Selective pressures associated with the cacti environment favor similar phenotypic traits

across cactophilic species, but different evolutionary mechanisms (for instance, gene duplica-

tion, HGT) and/or genes contribute to phenotypic convergence of different lineages. In this

scenario, similar phenotypes emerge through distinct evolutionary trajectories;

Scenario III: Divergent phenotypes and genotypes

Distinct phenotypic landscapes are explored by distinct clades when thriving in the same

environment (niche partitioning); different evolutionary mechanisms contribute to these

phenotypes.

To explore which scenario(s) best reflect(s) the process of yeast adaptation to the cacti envi-

ronment, we developed a framework for identifying signatures of adaptation and convergence

from high-throughput genomic and phenotypic data [51] (Fig 2B). First, we employed a ran-

dom forest (RF) classifier to identify phenotypic and genetic commonalities that distinguish

Pichia. Estimated times of origin, as determined in [51], for the emergence of cactophily are represented for these 3

example clades. The data underlying this Figure can be found in https://doi.org/10.6084/m9.figshare.24114381.

https://doi.org/10.1371/journal.pbio.3002832.g001

PLOS BIOLOGY Convergent evolution of yeast cactophily

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002832 September 23, 2024 5 / 32

https://doi.org/10.6084/m9.figshare.24114381
https://doi.org/10.1371/journal.pbio.3002832.g001
https://doi.org/10.1371/journal.pbio.3002832


Fig 2. Alternative scenarios for the evolution of yeast cactophily and methodological framework employed in this

study. (A) Methodological framework for investigating signatures of convergent evolution of yeast cactophily.

Association with cacti evolved multiple times in yeasts from distinct genetic backgrounds, which are represented by

distinct shades of gray. Convergent adaptation to the cacti environment might have involved convergence at both

phenotypic and genomic levels (Scenario I), phenotypic convergence through distinct molecular paths (Scenario II), or

lack of convergence at both phenotypic and genotypic levels (Scenario III). Each of these scenarios is tested using a

methodological framework (B) involving (a) machine learning approach wherein a model is trained to distinguish

cactophilic from non-cactophilic yeasts from genomic and phenotypic features; (b) gene family analyses to find

evidence of gene duplications, losses, and HGT that might have occurred in cactophilic yeasts; and (c) evaluation of

signatures of positive selection and of changes in relative evolutionary rates (evolving faster or slower) in branches

leading to cactophilic clades.

https://doi.org/10.1371/journal.pbio.3002832.g002
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cactophilic from non-cactophilic yeasts. We would expect that our RF classifier would yield

highly accurate predictions for Scenario I, intermediate accuracy for Scenario II, and lack of

accuracy for Scenario III. For instance, in Scenario I, where association with cacti would

involve the evolution of similar phenotypes encoded by the same genomic paths, we expect

that the accuracy of prediction obtained would be near 100% as both genomic and phenotypic

features would be shared by all cactophilic species. In contrast, Scenario III, which implies that

the distinct cactophilic lineages experienced distinct changes and display distinct phenotypes,

we would expect that our accuracy of prediction would be close to random (i.e., 50%) because

no genetic or phenotypic feature would be predictive of cactophily.

Second, we inspected patterns of gene presence/absence due to gene duplication, and HGT.

Third, we investigated genome-wide evolutionary rates to detect signatures of convergence in

evolutionary rates and of positive selection in individual genes (Fig 2B), which have been also

frequently implicated in adaptive evolution [5,19,21,22,63]. Specifically, for the detection of

convergent evolutionary rates, we adopted an approach that identifies genes with evolutionary

rate (i.e., number of amino acid substitutions per site) shifts across a phylogeny including mul-

tiple cactophilic and non-cactophilic species and correlates these shifts with the independent

emergence of cacti association [64]. The analyses of gene family and evolutionary rates allow

us to identify which genomic features (genes) and mechanisms (duplication, HGT, or altered

evolutionary rates) may be associated with the common phenotypic features identified in the

machine learning analyses. Under Scenario I, we would expect to find similar mechanisms

(positive selection, rapid/slow evolutionary rates, HGT, or duplication) impacting the same

phenotype across cactophilic clades. Under Scenario II, we would expect to find distinct

genetic mechanisms/genes affecting the same phenotypes across cactophilic clades. Under Sce-

nario III, we would expect an absence of shared mechanisms, genes, and phenotypes across

clades.

We applied this methodological framework to study convergence in ecological specializa-

tion in yeasts but note that it can be applied more generally to study the process of convergent

or adaptive evolution.

Specific metabolic and genomic traits predict cactophily

To investigate if cactophilic yeasts share similar phenotypic and/or genomic traits, we used a

dataset of 1,154 yeast strains [51], from which 54 are either strictly cactophilic (rarely found in

other environments, n = 31) or transient (frequently isolated from cacti but cosmopolitan,

n = 21) (S1 Table). Functional genomic annotations (KEGG– 5,043 features) and physiological

data (122 features) were retrieved from Opulente and colleaguesAU : Pleasenotethatallinstancesof }etal:}inthemaintexthavebeenchangedto}andcolleagues}; asperPLOSstyle:[51] and used as features in a

supervised RF classifier trained to distinguish cactophilic from non-cactophilic yeasts. By

training 20 independent RF runs using randomly selected balanced datasets (54 non-cactophi-

lic species randomized each time and the 54 cactophilic species), we correctly identified an

average of 38 (approximately 70%) cactophilic species (Fig 3A), yielding an overall accuracy

and precision of 72% and 73%, respectively. Species incorrectly assigned in 10 or more inde-

pendent runs were equally distributed across strictly and transiently cactophilic groups (7 in

each) (S2 Table). We next repeated the analysis considering only strictly cactophilic species

(transient species were considered non-cactophilic) and obtained slightly higher accuracy

(76%) and precision (76%) (Fig 3B). Notably, correct classifications were obtained across phy-

logenetically distantly related genera (for instance, Tortispora, Phaffomyces, or Pichia)

(Fig 3A), while incorrect classifications were obtained for species belonging to cactophilic

clades in which correct classifications were obtained; for instance, despite being closely related,

we obtained both correct and incorrect classifications for cactophilic species belonging to the
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Fig 3. Cactophilic and non-cactophilic yeasts can be predicted from genomic and metabolic data with good accuracy.

(A) (left) Distribution of correct random forest (RF) classifications of cactophilic yeasts across the Saccharomycotina

phylogeny. (right) Confusion matrix showing the average number of true positives (37.40), true negatives (39.95), false

positives (14.05), and false negatives (16.60) across strictly cactophilic and transient species resulting from 20 independent RF

runs. On the bottom, the top 10 most important metabolic (presence or absence of growth; in blue) and genomic (presence
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Phaffomyces genus (highlighted in light blue, Fig 3A). These results suggest that the phyloge-

netic relatedness between some cactophilic species did not significantly interfere with the accu-

racy of the RF classifier.

We next examined the top features that significantly contributed to the RF classifier. The

feature with the highest relative importance was growth at 37˚C, when analyzing either all cac-

tophilic species (Fig 3A) or just strictly cactophilic species (Fig 3B). Ability to grow at high

temperatures was previously found to be prevalent in cactus-associated yeasts [38, 65] and is

also an adaptive feature of cactophilic Drosophila [48,66]. Growth at 40˚C and 42˚C were also

among the top 10 most important features, supporting the hypothesis that thermotolerance is

a distinctive feature of cactus-associated yeasts. In fact, 90%, 66%, and 46% of cactophilic yeasts

can grow at 37˚C, 40˚C, and 42˚C, respectively, compared to only 39%, 19%, and 10% of non-

cactophilic yeasts (chi-squared test, p< 0.01) (Fig 3C).

Analyzing the top 100 most important metabolic features, we observed that 74 are less com-

mon in cactophilic species compared to non-cactophilic species (S2 Table). For instance, tre-

halose assimilation is more rarely found in cactophilic species (approximately 25%) than non-

cactophilic species (approximately 74%) (chi-squared test, p-value< 0.01) (Fig 3C). Trehalose

generally accumulates during numerous stress conditions including heat stress [67,68]. When

cells return to a more favorable condition, the accumulated trehalose is hydrolysed into glu-

cose by the trehalase Nth1. Inactivation of NTH1 by mutations, resulting in impairment of tre-

halose hydrolysis, can be one of the outcomes of the heat stress response in experimentally

evolved strains of S. cerevisiae under high temperature stress [69,70], suggesting that deficient

trehalose hydrolysis can be beneficial under long-term thermal stress conditions. We found

that NTH1 is generally present in cactophilic genomes, suggesting that absence of NTH1 does

not explain impairment in trehalose assimilation in these species. Other top important meta-

bolic features, such as sucrose assimilation, are also more rarely found in cactophilic species

(chi-squared test, p-value < 0.001) (S2 Table and Fig 3C), echoing the general trend of a nar-

rower spectrum of carbon sources assimilated by cactophilic species compared to their non-

cactophilic counterparts (Fig 3D). However, some metabolic traits are more frequently found

among cactus-associated yeasts, such as assimilation of lactate (chi-squared test, p-

value < 0.01) (Fig 3D), which was previously found to be positively associated with yeast spe-

cies isolated from the cacti environment [38,65].

Among the most important genomic features were presence or absence of genes involved

in multiple distinct functions: K15325 (splicing), K06116 (glycerol metabolism), K01192 (N-

glycan metabolism), K00547 (amino acid metabolism), K11762 (chromatin remodeling),

K11370 (DNA repair), K11511 (DNA repair), or K19783 (postreplication repair). All these fea-

tures are less common in cactophilic than in non-cactophilic species (S2 Table). One interest-

ing exception is K03686, an Hsp40 family protein encoded by 85% of cactophilic and 57% of

non-cactophilic species (S2 Table). To ascertain whether metabolic, genomic, or both types of

data were driving the classification, we next ran RF using each of the 2 types of data (genomic

or absence of KEGG; in gray) features for the RF classifier ranked according to their importance scores are shown. (B)

Confusion matrix and top 10 most important features for the RF classifier using only strictly cactophilic species. (C)

Distribution of the proportion of the most important features to predict cactophily (strict cactophilic and transient) and non-

cactophilic species for the entire dataset of 1,154 yeasts. (D) Distribution of the proportion of metabolic traits (representing

presence or absence of growth under the conditions shown) [51] across cactophilic (strict and transient) and non-cactophilic

species. Only metabolic traits for which no more than 50% of data were missing were considered. Additionally, only

metabolic traits exhibiting more than 10% prevalence in one of the groups (cactophilic or non-cactophilic) are shown.

Statistically significant differences (chi-squared test; * p-value< 0.05, ** p-value< 0.01, *** p-value< 0.001) between the

proportions of cactophilic and non-cactophilic species able to grow in each carbon/nitrogen source are shown. The data

underlying this Figure can be found in https://doi.org/10.6084/m9.figshare.24114381.

https://doi.org/10.1371/journal.pbio.3002832.g003
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and metabolic) separately (S3 Fig). Accuracy values for predicting strictly cactophilic species

using only genomic data, only metabolic data, or both were similar (72.2%, 76.4%, and 76.0%,

respectively). Importantly, we found that the top features in the RF classifier strongly overlap

between the analyses of the different features separately and together (S2 Table), indicating

that both metabolic and genomic features are robust fingerprints of adaptation to the cacti

environment.

HGT and duplication of cell wall–degrading enzymes in cactophilic yeasts

We next looked for genes that might be implicated in cactophily by examining gene duplica-

tion and HGT across 3 groups that contained 2 or more cactophilic lineages. We constructed 3

distinct datasets (S3 Table) containing multiple cactophilic species and closest non-cactophilic

relatives within the Lipomycetales/Dipodascales/Trigonopsidales orders (referred to as LDT

group, including Tortispora spp., Dipodascus australiensis,Magnusiomyces starmeri,Myxo-
zyma mucilagina, andMyxozyma neglecta), Phaffomycetales (including Starmera spp. and

Phaffomyces spp.), and Pichiales (including 2 distinct Pichia spp. cactophilic clades).

We focused on gene duplications and HGT, as gene losses are usually not reliably estimated

due to annotation and sampling issues or inaccurate gene family clustering [71]. By inspecting

orthogroups that uniquely contained cactophilic species, we found a gene encoding a pectate/

pectin lyase was uniquely found in P. eremophila (strictly cactophilic) and P. kluyveri (tran-

sient), which are commonly isolated from rotting cacti tissues. Sequence similarity searches

across the entire dataset of 1,154 yeast genomes confirmed that this gene is absent from all

other species. Pectate lyases are extracellular enzymes involved in pectin hydrolysis and plant

cell wall degradation. Consistent with this function, these enzymes are mostly found among

plant pathogens and plant-associated fungi and bacteria [72,73], and their activity has only

been reported in a handful of Saccharomycotina species [74]. Phylogenetic analyses showed

that the 2 yeast sequences are nested deeply within a clade of bacterial pectin lyases (Fig 4A).

The most closely related sequence belongs to Acinetobacter boissieri [75], which has been fre-

quently isolated from plants and flowers, and to Xanthomonas and Dickeya, 2 genera of plant

pathogenic bacteria [76,77].

Using gene tree–species tree reconciliation analyses implemented in GeneRax [71], we next

examined genes with evidence of duplication in at least 1 cactophilic species belonging to each

group, while excluding events of duplication in non-cactophilic species belonging to each of

the 3 lineages/groups inspected (S4 Table).

Duplication of another gene involved in plant cell wall degradation, encoding a rhamnoga-

lacturonan endolyase (K18195), was detected in the cactophilic P. antillensis, P. opuntiae, and

Candida coquimbonensis (Phaffomycetales; S4 Table). These species contained 2 copies of this

gene compared to their closest relatives, which contained only one (Fig 4B). These enzymes

are responsible for the extracellular cleavage of pectin [82], which, along with cellulose, is one

of the major components of plant cell wall. Pectin lyase [74] activities have been rarely

reported among yeasts; therefore, we assessed the distribution of the rhamnogalacturonan

endolyase across the 1,154 proteomes using a BLASTp search (e-value cutoff e−3) and found

that it displayed a patchy distribution, being found in fewer than 60 species (Fig 4B).

Consistent with their function, HGT-derived pectin lyases and rhamnogalacturonan endo-

lyases were predicted to localize to the extracellular space based on primary sequence analyses

[78] (Fig 4). Pectin lyase enzymatic activity was previously detected in P. kluyveri strains asso-

ciated with coffee fermentation [73,83], suggesting that the identified HGT-derived pectin

lyase is likely responsible for this activity.
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Fig 4. Duplication and horizontal gene transfer of plant cell wall-degrading enzymes in cactophilic species. (A) Phylogenetic

tree of closest related sequences to pectin lyases from P. eremophila and P. kluyveri. (on the right) Pruned tree highlighting the

ecological association of bacteria species harboring the closest related pectin lyase sequences to P. eremophila/P. kluyveri proteins.

Prediction of subcellular localization [78,79] is shown in the panel below. (B) Distribution of rhamnogalacturonan endolyases

across the 1,154 yeast genomes (presence in black and absence in gray). (on the right) Pruned phylogenetic tree of yeast
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Convergent accelerated rates in heat resistance-related genes

We next specifically looked for evidence of convergent evolutionary rates [64], another indica-

tor of adaptation [21,22]. For this analysis, we inspected the selected the same lineages/groups

as for the gene family analyses (Pichiales, Phaffomycetales and the LDT group; S3 Table).

Correlation analyses between relative evolutionary rates (RERs—the rate at which a given

branch on a gene tree is evolving, normalized by the genome-wide evolutionary rate on that

branch) and cactophily across ancestral and terminal branches revealed changes in evolution-

ary rate associated with the evolution of cactophily. Specifically, we inferred that 20/3,029 gene

families in the LDT group are under accelerated evolution (i.e., these genes are evolving signifi-

cantly faster in cactophilic lineages than in their non-cactophilic relatives) and 33/3,029 have

undergone decelerated evolution (i.e., these genes are evolving significantly slower in cactophi-

lic lineages than in their non-cactophilic relatives) (S5 Table and Fig 5A). In the Pichiales, 14/

2,204 showed evidence of acceleration and 25/2,204 of deceleration (Fig 5A). In the Phaffomy-

cetales, we found 32/3,550 accelerated genes and 30/3,550 decelerated genes (S5 Table and

Fig 5A).

The accelerated genes are associated with varied cellular functions; however, no significant

enrichment in particular biological or molecular functions was found (S5 Table). In Pichiales,

7 out of 14 accelerated genes impact heat resistance according to large-scale studies in S. cerevi-
siae [84]. For instance, SWI6 encodes a transcription factor that induces transcription during

heat stress, and deletion of this gene causes several impairments in the resistance to multiple

stresses, including heat [85] and cold [86]. Among the accelerated genes in Phaffomycetales,

we found LEC1, which was recently associated with ergosterol organization (Fig 5B) [87].

Inspecting the literature for phenotypes associated with either null or conditional mutants

in S. cerevisiae [84], we found that, irrespective of their function, 12/20 genes that exhibited

accelerated rates in the LDT group are involved in either heat and/or desiccation resistance.

For instance, loss-of-function mutations in CAP2, which encodes part of a capping complex

involved in barbed-end actin filament capping and filamentous growth, are associated with

heat sensitivity and abnormal chitin localization leading to aberrant cell morphology [88,89].

Another gene identified as having accelerated evolutionary rates in the LDT group was PHO23
(Fig 5B), which was found to be required for the growth of S. cerevisiae during heat shock [85].

Genes that underwent decelerated evolution also play multiple roles (S5 Table), and some are

involved in essential functions such as DNA repair, cell cycle, and splicing or encoding ribo-

somal proteins.

We next assessed the occurrence of positive selection across cactophilic clades using

branch-site tests of rates of nonsynonymous (dN) and synonymous substitutions (dS) [90,91].

These tests were performed separately for each of the 5 cactophilic subclades within the major

lineages selected: Pichia A and Pichia B clades (Pichiales), Starmera and Phaffomyces clades

(Phaffomycetales), and Tortispora clade (Trigonopsidales–LDT group) (S4 Fig). First, we ran

CODEML [92] on foreground branches (p-value< 0.005, Benjamini–Hochberg (BH)

rhamnogalacturonan endolyase and closest relatives, highlighting the duplication events in cactophilic Phaffomyces species. A

BLASTp search against the yeast dataset of 1,154 proteomes was performed, and all significant hits were retrieved (e-value cutoff

e−3). Phylogeny was constructed in IQ-TREE v2.0.6 (-m TEST, -bb 1,000) [80,81]. Branch support (bootstrap> = 90) is

represented as black circles. Branches are colored according to taxonomy as indicated in the key. Branches clustering other

putative rhamnogalacturonan endolyase sequences in the Saccharomycotina (total of 33) were collapsed. In P. opuntiae, there are

2 additional partial sequences (g001496.m1 and g001773.m1, 163 amino acids) that only partially overlap (from 39 to 163

overlapping amino acids) with the remaining nearly complete sequences (g002229.m1: 468 amino acids and g001049.m1: 610

amino acids). Prediction of subcellular localization according to SignalP and Deeploc [78,79] is shown in the panel below. The

data underlying this Figure can be found in https://doi.org/10.6084/m9.figshare.24114381.

https://doi.org/10.1371/journal.pbio.3002832.g004
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Fig 5. Genes involved in maintenance of the cell envelope show accelerated evolution in cactophilic clades. (A) Genes with

accelerated evolutionary rates in the 3 cactophilic groups inspected. Correlation statistics (Rho) for convergence between

accelerated evolutionary rates and cactophily, as well as the respective statistical significance (p-value) of this correlation. (B)

(left) Relative evolutionary rates (RER) and (right) fixed-topology trees for proteins related with integrity of the cell membrane

(Lec1) and heat stress (Pho23). The data underlying this Figure can be found in https://doi.org/10.6084/m9.figshare.24114381.

https://doi.org/10.1371/journal.pbio.3002832.g005
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correction) and discarded genes for which evidence of positive selection, even if only marginal,

was found in the non-cactophilic sister clades (p-value< 0.05, no correction) (S4 Fig). We

then validated genes for which a strong signal for selection was found specifically in cactophilic

taxa but not in their non-cactophilic relatives with aBSREL [91] (p-value < 0.05, no correc-

tion). With this conservative approach, we found evidence for positive selection for 38/2,279

genes examined in Tortispora; 285/2,175 in Pichia A; 112/2,155 in Pichia B; 99/1,685 in Phaffo-
myces; and 68/1,510 in Starmera (S6 Table). Importantly, signatures of selection (significantly

higher ω values than 1 in branches leading to cactophilic clades) can stem from either high dN

or low dS values [92], and we did not specifically distinguish between the 2 scenarios. The

strongest candidate genes to be under positive selection showed limited overlap; 59 genes in 2

or more clades, while no genes presented evidence for positive selection in all 5 clades.

The 59 genes with evidence of positive selection in 2 or 3 clades are involved in multiple

biological functions (S6 and S7 Tables). We noted that several genes involved in ergosterol bio-

synthesis were under positive selection in multiple cactophilic clades (ERG1, ERG13, ERG24,

ERG26, UPC2, SIP3,HMG1, and LAF1) (Fig 6 and S6 Table). Part of these genes are under

positive selection in more than 1 clade (ERG1, ERG26, and UPC2). Ergosterol is involved in

stabilizing cell membranes during heat stress and therefore has a major role in the tolerance to

numerous stresses in fungi [68,93–95].

Other genes were specifically involved in cell wall biosynthesis and integrity (S6 Table and

Fig 6). For instance, CDA2, which encodes a chitin deacetylase involved in the function of the

fungal cell wall [96,97], showed evidence of positive selection in the stem branches of 3 distinct

Fig 6. Signatures of convergent molecular evolution across cactophilic clades. General biological functions/pathways for which detection of distinctive

evolutionary alterations (positive selection, duplication, and HGT) in cactophilic clades are highlighted. The distinct evolutionary events are represented by

squares filled with different colors, as indicated in the key. The number of genes involved in each function/pathway is indicated in the squares (identification of

these genes can be accessed in S6 Table). Schematic representations of the fungal cell envelope and plant cell wall are shown as many of the functions with

signatures of convergence impact these 2 structures.

https://doi.org/10.1371/journal.pbio.3002832.g006
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cactophilic clades (Pichia A, Pichia B, and Starmera). In Tortispora, we found 2 copies of this

gene.

Other cell wall–related functions were found among the group of genes that showed evi-

dence for positive selection in cactophilic clades, namely, chitin synthases CHS2 and CHS3
and chitin-related genes CHS5 (involved in Chs3 transport from the Golgi to the plasma mem-

brane), UTR2 (encoding a chitin transglycosylase), or BUD7 (encoding a Chs5 binding pro-

tein) [98]. DCW1 (encoding a mannosidase required for cell wall formation and resistance to

high temperatures) [99], STE7 (encoding a signal transducing MAP kinase involved in cell

wall integrity and pseudohyphal growth) [100], and AYR1 (encoding a bifunctional triacylgly-

cerol lipase involved in cell wall biosynthesis) [101] were also found among the strongest can-

didates. Mutations in these genes have been associated with cell wall defects and increased heat

sensitivity in S. cerevisiae [102–105], and differential transcriptional responses to heat stress

have also been documented for some of these genes and functions [106].

While we previously found that the distribution of presence/absence of the trehalase gene

NTH1 was not associated with the low prevalence of trehalose assimilation in cactophilic spe-

cies (Fig 3C), NTH1 was among the candidate genes to be under positive selection in the 2

Pichia clades (S6 Table). We also found several genes involved in the response to heat stress

across cactophilic clades (SSC1,HSC82,HSP60, DBP5, AIM10,MCK1, and NAT1).

Genes involved in maintenance of the cell envelope show evidence of codon

optimization

To infer the transcriptional activity of cactophilic yeasts, we determined gene-wise relative syn-

onymous codon usage (gw-RSCU), a metric that measures biases in codon usage that have

been shown to be associated with expression level [107], and examined the top-ranked genes

(95th percentile) in cactophilic species (S8 Table). Top-ranked genes include many encoding

ribosomal proteins and histones, which are known to be highly expressed and codon-opti-

mized in S. cerevisiae [108]. We noticed that the chitin deacetylase gene CDA2 and genes

involved in ergosterol biosynthesis (namely, ERG2, ERG5, ERG6, and ERG11) were among the

genes that fell within the 95th percentile rank for gw-RSCU in multiple cactophilic species. To

ascertain whether these genes also show signatures of codon optimization in closely related

non-cactophilic species, we determined their respective gw-RSCU percentile ranks. While no

clear pattern was observed for ERG genes (these genes were also highly ranked for gw-RSCU

in non-cactophilic species), we observed that CDA2 is particularly highly ranked in Phaffo-
myces, Starmera, and Pichia clades compared to their closest relative non-cactophilic species

(S5 Fig). CDA2 also showed evidence for positive selection in both Pichia clades and Starmera,

suggesting that distinctive synonymous and/or nonsynonymous might have resulted from

translational selection for optimized codons due to higher gene expression.

Convergent evolution of yeast cactophily occurred via the independent

acquisition of the same phenotypic traits through mostly distinct genetic

changes (Scenario II)

Our results suggest that the evolution of cactophily across the Saccharomycotina are most con-

sistent with Scenario II (phenotypic convergence associated with distinct genetic underpin-

nings; Fig 2). The intermediate accuracy in predicting cactophily obtained with the RF

classifier, using both genomic and metabolic features together or separately, and the general

overlap between the top features identified across the distinct RF runs, suggests that only some

features (both genomic and metabolic) are common to all species, while others may be spe-

cies-specific. It may also suggest that some common phenotypic features to most cactophilic
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species (such as thermotolerance) might have evolved through distinct genetic trajectories

(Scenario II). This was further supported by the results obtained from the evolutionary rates

analyses where we found mostly distinct genes involved in similar functions (for instance, heat

stress response, ergosterol biosynthesis) under selection or accelerated evolution across cacto-

philic clades. Nevertheless, some exceptions where the same genes were involved (for instance,

CDA2), offering support for Scenario I, did exist. Finally, we found distinct mechanisms (HGT

and gene duplication) acting on distinct genes (encoding pectin degrading enzymes) involved

in similar functions (plant cell wall degradation); these findings were also most consistent with

Scenario II.

Cactophily as a launching pad for the emergence of opportunistic human

pathogens?

Thermotolerance is a key shared trait by human fungal pathogens [27,109–111]. Interestingly,

several cactophilic or closely related species are emerging human opportunistic pathogens

(Figs 7 and S6). Examples include Candida inconspicua and Pichia norvegensis [112], which

cluster within the Pichia cactophila clade (Fig 7), and Pichia cactophila, which was also isolated

from human tissue [113]. Recently, a novel and extremely thermotolerant clinical isolate was

identified as belonging to the P. cactophila clade [114]. Cases of fungemia have also been asso-

ciated with Pichia kluyveri [115], a transient species belonging to a separate clade within the

Pichiales. Kodamaea ohmeri, which has also been isolated from the cacti environment [52] and

is closely related to the cactophilic Ko. nitidulidarum and Ko. restingae, is also an emerging

human pathogen with a significant mortality rate [116–118].

Fig 7. Example cactophilic lineages that contain human opportunistic pathogens. Ecological associations of cactophilic species and their closest relatives are

represented, highlighting examples of species associated with human infections. Ecological information for additional cactophilic species and closest relatives is

provided in S6 Fig.

https://doi.org/10.1371/journal.pbio.3002832.g007
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In addition to thermotolerance, other aspects of the cactophilic lifestyle might be preadapta-

tions for human pathogenicity. For instance, the sterol composition of the cell envelope has

been implicated in fungal virulence [95,119–121]. Mutations in genes involved in the ergos-

terol biosynthetic pathway are associated with antifungal resistance [121–124], making it a

major target of antifungal drugs [125]. We showed that the evolutionary rates of several genes

involved in the ergosterol biosynthesis across multiple cactophilic clades have changed, sug-

gesting that this pathway might be under a new selection regime in these lineages. However,

the impact of these alterations remains to be elucidated.

Discussion

By examining high-throughput genomic, phenotypic, and ecological data for 1,049 yeast spe-

cies, we unveiled multiple (approximately 17) independent occurrences of cacti association.

The ability to grow at�37˚C emerged as the strongest predictor of the cactophilic lifestyle.

Being a polygenic trait, thermotolerance can arise through multiple distinct evolutionary tra-

jectories [126]. Heat stress generally affects protein folding and cell integrity and involves a

complex response from multiple genes impacting the expression of heat shock proteins, the

integrity of the cell wall and membranes, production of compatible solutes, repression of pro-

tein biosynthesis, and/or temporary interruption of the cell cycle [67]. The expression of genes

involved in cell wall biosynthesis and integrity is, for instance, affected when strains of S. cere-
visiae are exposed to heat stress [106]. Possibly in association with thermotolerance, we found

genes involved in maintaining the cell envelope exhibiting evidence of positive selection,

codon optimization, and duplication in multiple cactophilic clades.

We also found genomic fingerprints that indicate phenotypic convergence in the ability to

feed on plant material. Acquisition and duplication of plant cell wall–degrading enzymes can

be interpreted as adaptive and supports the involvement of cactophilic yeasts in the cacti

necrosis process [40]. Interestingly, the contrasting mechanisms employed, HGT of a bacterial

pectin lyase and duplication of a rhamnogalacturonan lyase, show that phenotypic conver-

gence can arise through disparate molecular mechanisms. Based on our machine learning,

gene family, and evolutionary rates analyses, we detected many cases of phenotypic conver-

gence through distinct molecular mechanisms both in respect to thermotolerance and to plant

cell wall degrading ability (Scenario II; Fig 2), as well as a few cases of phenotypic and molecu-

lar convergence for thermotolerance (Scenario I; Fig 2). Based on these data, we conclude that

cactophily can originate through multiple phenotypic and genetic changes, some commonly

found and some more rare, which generally fits best with Scenario II.

It is important to note, however, that cactophily is a complex ecological trait and many

genetic and phenotypic changes have likely been involved in its independent evolution across

the Saccharomycotina. Some of the phenotypic traits contributing to cactophily may be shared

(Scenarios I and II), yet others may be unique to specific taxa (Scenario III). The pleiotropy of

many genes and the multigenic character of many phenotypic traits further complicate distin-

guishing between scenarios (especially Scenarios I and II).

It was previously postulated that most cactophilic yeasts evolved from ancestors associated

with plants [37] (S6 Fig), indicating that the ability to thrive in plant-related environments was

already present in the ancestors of many of the lineages that evolved cactophilic lifestyle. How-

ever, cacti are native to arid and semiarid climates in the Americas [127], where very high (and

low) temperatures and low humidity constitute crucial challenges. This reasoning aligns with

our finding that thermotolerance is the phenotypic feature with the strongest signature of

adaptation to cacti.
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Compared to mammals, a lineage that has provided spectacular examples of parallel molec-

ular evolution underpinning the independent emergence of convergent traits [5,8,63,128–

130], yeasts exhibit far higher levels of genetic and physiological diversity [26]. Consequently,

the probability of finding overlapping evolutionary paths might be reduced as pleiotropic

effects or mutational epistasis might be more prominent across divergent genetic backgrounds

[9,10]. It is also possible that collection of additional phenotypic data or evolutionary genomic

analyses will revise our understanding of the nature of convergent evolution to cactophily.

This caveat notwithstanding, these results present a first snapshot of the study of convergent

evolution of an ecological trait in yeasts, employing multiple state-of-the-art methodologies

that aim at looking into a wide range of evolutionary mechanisms, phenotypes, and genetic

determinants. It also underlines the exceptional value of combining high-throughput physio-

logical, genomic, and ecological data to investigate still-pressing questions in evolutionary

biology.

Materials and methods

Species selection

Yeast species associated were selected from Opulente and colleagues [51] by cross-referencing

ecological information available from the literature [33,35–37,39,52,54,55,58–60,62,131,132].

Two different groups of cactophilic species were determined according to their degree of asso-

ciation with cacti: strictly cactophilic (species that are mainly isolated from cacti and very

rarely isolated from other environments) or transiently cactophilic (species frequently found

in cacti, but also frequently found in other environments or for which strong association with

cacti was not clear from the literature) (S1 Table). Species very rarely isolated from this envi-

ronment were not considered as they could either represent misidentifications or have origi-

nated from stochastic events.

Inference and dating of cacti association events in the Saccharomycotina

The Saccharomycotina phylogeny used throughout this work was inferred in Opulente and

colleagues [51]. Briefly, the concatenation-based ML tree was inferred with 1,403 orthologous

groups (OGs) of genes using IQ-TREE v2.0.7 [81]. The number of independent events of cacti

association were inferred by performing an ancestral state reconstruction using a continuous-

time Markov model for discrete trait evolution implemented in Mr Bayes [133]. A simplified

workflow implemented in the R environment was followed [134,135]. Only species classified

as strictly cactophilic (S1 Table) were considered as exhibiting the trait (cactophily). Transient

species were considered as not having the trait. The estimated times for the emergence of cac-

tophily were inferred according to a relaxed molecular clock analyses of the subphylum Sac-

charomycotina [51].

Machine learning

To assess whether cactophilic species can be classified based on physiological and/or genomic

traits, we used a RF classifier with physiological data (for 893/1,154 strains) and genomic data

(functional KEGG annotations) for 1,154 yeast strains obtained from Opulente and colleagues

[51]. Briefly, physiological data were generated by assessing quantitative growth for a dataset

of 853 strains in 24 different carbon and nitrogen substrates. Functional genomic data (KEGG

orthologs) were assigned to protein sequences of gene models using the mapper mode imple-

mented in KofamScan tool [136].
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All strictly and transiently cactophilic species identified in the dataset of 1,154 strains were

considered for the analyses and were classified as “1” (meaning having the trait). All the

remaining species in the dataset were classified as “0” (meaning lacking the trait). The RF clas-

sifier is a commonly used machine learning algorithm that is useful for this type of analysis as

it can capture interactive effects between features in the training dataset and, and it is straight-

forward to identify the features that most contribute to the prediction accuracy of the algo-

rithm, facilitating the exploration of large datasets for generation of hypotheses and biological

meaning [137]. We trained a machine learning algorithm built by an XGBoost (1.7.3) RF clas-

sifier (XGBRFClassifier()) with the parameters “max_depth = 12, n_estimators = 100,

use_label_encoder = False, eval_metric = ‘mlogloss’, n_jobs = 8” on 90% of the data, and we

used the remaining 10% for cross-validation, using RepeatedStratifiedKFold from sklearn.

model_selection (1.2.1) [137–139]. We used RepeatedStratifiedKFold to generate accuracy

measures. We used the cross_val_predict() function from Sci-Kit Learn to generate the confu-

sion matrixes; these matrices show the numbers of strains correctly predicted to be cactophilic

or non cactophilic (True Positives and True Negatives, respectively) and incorrectly predicted

(False Positives, which are predicted to be cactophilic but are not; and False Negatives, which

are not predicted to be, but are cactophilic). Top features were automatically generated by the

XGBRFClassifier using Gini importance, which measures a mean decrease in node impurity

for each feature, weighted by the probability of each sample reaching that node (nodes are

splits on the decision tree and node impurity is the amount of variance in growth on a given

carbon source for strains that either have or do not have this trait/feature). This process was

repeated for 20 runs using balanced datasets of 54 (or 31 for the analysis excluding transiently

cactophilic species) randomly selected non-cactophilic species for each run (and 54 and 31

cactophilic, respectively), and then the averages of each result were used in the final confusion

matrixes and feature importance graphs. Balancing helps the RF classifier place as much

weight in predicting the rarer, positive cases (cactophilic) as in predicting the more common

negative cases (non-cactophilic species). The present dataset is highly unbalanced (less than

5% of the strains have the trait of interest), hence accuracy of predicting cactophily can suffer

because predicting its absence in almost all instances leads to very high accuracy, but not very

high precision.

Gene family analyses

To find genes that are specific to or have expanded in cactophilic clades, orthogroup assign-

ment was performed with Orthofinder v.2.3.8 [140] using an inflation parameter of 1.5 and

DIAMOND v2.0.13.151 [141] as the sequence aligner. To be able to detect the strongest signa-

tures of adaptation to the cacti environment, we focused only on lineages that contained clades

with 3 or more strictly cactophilic species. Due to the high phylogenetic distance between the

major strictly cactophilic clades, in order to optimize the number of orthogroups correctly

assigned, this analysis was performed separately for each cactophilic group (LDT group,

Pichiales, and Phaffomycetales) (S3 Table). Closely related non-cactophilic species were

included according to the previously reported phylogeny in Opulente and colleagues [51]. Spe-

cies in which more than 30% of the genes were multicopy were discarded. Gene family evolu-

tionary history was inferred using GeneRax v1.1.0 [71], which incorporates a Maximum-

likelihood and species-tree-aware method. For that, orthogroups containing more than 10

sequences were aligned with MAFFT v7.402 using an iterative refinement method (L-INS-i)

[142]. Pruned species trees for each dataset were obtained from the main Saccharomycotina

tree [51] using PHYKIT v 1.11.12 [143]. The species trees and alignments were subsequently

used as inputs in GeneRax. Briefly, the UndatedDTL probabilistic model was used to compute
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the reconciliation likelihood that accounts for duplications, transfers, and losses. For simplifi-

cation, the same model of sequence evolution was used for all gene families (LG+I+G4) during

gene tree inference by GeneRax. Events of duplication occurring in at least 1 cactophilic spe-

cies were first identified. Subsequently, duplication events occurring in non-cactophilic clades/

species within each of the 3 datasets were removed, so as to consider duplication events specific

to cactophilic species within each of the 3 lineages/groups analyzed (Pichiales, Phaffomyce-

tales, and the LDT group). Reconciled trees were visualized with Notung v2.9 [144], and phylo-

genetic trees were constructed for candidate genes/gene families putatively relevant for niche

adaptation.

Evolutionary rates

To determine which genes might exhibit altered evolutionary rates in cactophilic clades/spe-

cies, we used both branch-site tests of positive selection using CODEML implemented in

PAML [90] and absREL implemented in Hyphy [91], and convergent evolutionary rates analy-

ses implemented in RER converge [64]. To investigate fingerprints of convergence in evolu-

tionary rates, we used RER converge using the same groups/lineages as for the gene family

analyses (S3 Table) in order to include more than 1 cactophilic clade/species per dataset, so

that convergence could be tested. In this case, single-copy orthologs (SCOs) from the Ortho-

finder run performed for the gene family evolution analysis were used. To increase the number

of orthologs available for analysis, multicopy orthogroups that were present in at least 2 species

belonging to distinct cactophilic clades within each dataset were selected. Next, SCOs from

each multicopy orthogroup were pruned using OrthoSNAP v0.0.1 [145]. To do this, multiple

sequence alignments were produced for each multicopy orthogroup using MAFFT v7.402 (—

localpair), and phylogenies were obtained with FastTree [146]. We next ran OrthoSNAP with

default parameters, keeping at least 50% of the species from the original dataset (50% occu-

pancy). For each orthogroup, branch lengths were estimated on a fixed topology obtained

from the Saccharomycotina species tree [51] by pruning the species of interest using PHYKIT

v 1.11.12 [143]. Each orthogroup was first aligned with MAFFT v7.402 (—localpair), and the

best-fitting model was assessed using IQ-TREE v2.0.6. Branch lengths were determined for

each orthogroup, in the fixed tree topology, using RAxML-NG v.0.9.0 [147] under the best

protein models inferred by IQ-TREE. All phylogenies were further analyzed with RER con-

verge to find evidence of convergent evolutionary rates in cactophilic species included in each

dataset.

Briefly, we tested the hypothesis of convergent evolutionary rates in the ancestral branches

leading to the cactophilic clades and/or species. Only phylogenies including a minimum of 2

foreground species and 10 species in total were considered. Genes for which a correlation ratio

(Rho- correlation between relative evolutionary rate and trait) higher than 0.25 and a p-value

(association between relative evolutionary rate and trait) lower than 0.05 were obtained were

further considered as good candidates for being under convergent accelerated evolution. For

those, original trees were manually checked. For Phaffomycetales, we exceptionally considered

rho > 0.15 because we failed to find genes with rho > 0.25.

A detailed scheme of the entire workflow can be found in S7 Fig.

For detecting positive selection, we looked specifically into a narrower phylogenetic spec-

trum including only individual cactophilic clades, to avoid masking non-convergent signa-

tures of selection (genes that are under positive selection in one cactophilic clade but not in

other clades and can therefore not be identified as being under positive selection due to lack of

statistical power). We used the same set of lineages/groups as for RER analyses but selected

only individual clades containing 3 or more strictly cactophilic. Remaining cactophilic (strictly
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or transient) species were excluded. In this way, 5 datasets (see S4 Fig) were considered includ-

ing members of different lineages (2 subclades within the Phaffomycetales: Starmera and Phaf-
fomyces; 2 within the Pichiales: Pichia A and Pichia B; and 1 within Trigonopsidales:

Tortispora). In Tortispora, we also included T. agaves because, despite not being associated

with Cactaceae species, it is associated with plants with similar characteristics (Agave spp.)

[33]. For all these 5 datasets, closely related species belonging to each of the families were

included based on the species phylogeny based on [51] (S4 Fig). Next, selection of orthogroups

using Orthofinder v.2.3.8 was performed for all the species included in the 5 datasets. Cluster-

ing of sequences was based on protein sequence similarity and calculated using DIAMOND

v2.0.13.151 using an inflation parameter of 1.5. SCOs present in all species in each dataset

were selected.

To avoid masking nonparallel signatures of positive selection, each dataset was separately

analyzed with CODEML [90] using the branch-site model [148] and considering the branch

leading to the cactophilic clade as the foreground branch. The likelihood of a gene being under

positive selection was evaluated through a likelihood ratio test [LRT: 2 × (lnH1 − lnH0)] [148].

LRT values were subsequently transformed into p-values using pchisq in R [pchisq(q, df = 1,

lower.tail = FALSE)]. These p-values were corrected for multiple testing, independently for

each clade, using the BH procedure [149] (S9 Table). Genes with a corrected p-value lower

than 0.005 were retained. We performed a second round of corrections to exclude genes with

evidence of positive selection also in closely related non-cactophilic species (background

branches). For that, we performed branch-site tests in CODEML in the same way but consid-

ering the sister clade as the foreground branch (S4 Fig). Genes for which a marginally signifi-

cant signal for positive selection was obtained for the non-cactophilic relatives (to be

conservative, we used an uncorrected p-value< 0.05) were excluded. In this way, we only con-

sidered genes for which a strong signal for selection was found specifically in cactophilic taxa

but not in their non-cactophilic relatives. We further validated genes inferred (by CODEML)

to be under selection specifically in cactophilic taxa with another adaptive branch-site random

effects likelihood test (aBSREL), implemented in HYPHY [91]; genes that did not show evi-

dence of selection with aBSREL (p-value < 0.05, uncorrected) were discarded.

In summary, genes considered to be candidates under selection specificallyAU : PleasenotethatasperPLOSstyle; donotuseitalicsforemphasis:Hence; pleaseconfirmthat}specifically}shouldbechangedtoregulartextinthesentence}Insummary; genesconsideredtobecandidatesunderselectionspecifically:::}in cactophilic

taxa in our study had to pass 3 criteria:

i. their BH-corrected p-value in the foreground branch was lower than 0.005;

ii. their uncorrected p-value in background branches was higher than 0.05; and

iii. their uncorrected p-value of foreground branches in aBSREL was lower than 0.05.

Enrichment analyses

Gene ontology (GO) enrichment analyses were performed for the genes under positive selec-

tion in each clade and also for genes that exhibited accelerated or decelerated evolution (RER

converge).

First, associated GO terms were obtained for all genes using eggNOG-mapper [150]. For

in-clade analyses, enrichment analyses were performed using P. cactophila (for Pichia A and

PichiaB datasets—positive selection analyses, and the Pichiales dataset–RER converge analy-

ses), Starmera amethionina (for Starmera dataset–positive selection analyses), Phaffomyces
opuntiae (for Phaffomyces dataset–positive selection analyses, and Phaffomycetales- RER con-

verge analyses), and T. caseinolytica (for Tortispora dataset–positive selection analyses, and

LDT group–RER converge abalyses) whole genome annotations as the background. For the
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analyses involving genes under positive selection in 2 or more clades, P. cactophila genome

annotations were used as the background. GO enrichment analyses were performed using the

R package topGO 2.28.0 [151]. Statistical significance was assessed using Fisher’s exact test

using the default “weight01” method. Correction for multiple testing was performed the “BH”

correction method. The results can be assessed in S5 and S7 Tables.

Codon usage bias

To examine codon optimization in particular genes of cactophilic species, we calculated the

gw-RSCU, implemented in Biokit v0.0.9 [107]. This metric was shown to correlate with the

tRNA adaptation index (tAI) [107], which measures the translation efficiency by considering

both codon optimization and the intracellular concentration of tRNA molecules [152]. The

gw-RSCU was calculated by determining the mean relative synonymous codon usage value for

all codons in each gene in the genome based on their genome-wide RSCU values. We ranked

the genes with the highest gw-RSCU values (subtracting the standard deviation to the gw-

RSCU mean value) and looked at the genes falling into the 95th percentile and above (S8

Table). Next, gene functions that were relevant for the cactophilic lifestyle were selected, and

their gw-RSCU values were inspected in non-cactophilic closest related species. Briefly, a local

BLASTp was used to find the putative orthologs by considering a protein identity of>40%.

The top hit was considered to correspond to the orthologous gene; however, whenever multi-

ple hits with similar protein sequence identity were found, the one with the highest rank was

considered. The percentile ranking for CDA2 was determined using the R package dplyr [153].

Supporting information

S1 Fig. Distribution of cacti-association across the Saccharomycotina. The Saccharomyco-

tina species tree phylogeny is represented with the respective branch labels as in Opulente and

colleagues [51]. Cacti association is shown in the outer circle next to the respective species/

strain (dark green–strictly cactophilic, light green–transient). The data underlying this

Figure can be found in https://doi.org/10.6084/m9.figshare.24114381.

(PDF)

S2 Fig. Ancestral state reconstruction of cacti association across the Saccharomycotina.

The number of independent events of cacti association were inferred by performing an ances-

tral state reconstruction using the MBASR toolkit [135] and the topology of the species tree

presented in Fig 1. State 0 (red) means absence of the trait while State 1 (orange) means pres-

ence of the trait and were attributed according to S1 Table (considering presence of the trait

only the strictly cactophilic species). For each node in the tree, probability of the trait being

present (orange) or absent (red) is represented as a pie chart. In each terminal branch, red or

orange circles represent the extant state (used as an input) for each species. Numbers next to

each node represent the node identification.

(PDF)

S3 Fig. Prediction of cactophily using only genomic or metabolic traits. (A) Confusion

matrices showing the average number of true positives, true negatives, false positives, and false

negatives across strictly cactophilic and transient species resulting from 20 independent RF

runs using either only metabolic or genomic data. On the right, the top 10 most important

metabolic and genomic features for the RF classifier ranked according to their importance

scores are shown. The features that overlap with the top 10 most important features resulting

from the RF runs with both genomic and metabolic data (Fig 3) are highlighted in green. The
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data underlying this Figure can be found in S2 Table.

(PDF)

S4 Fig. Positive selection datasets showing the species trees used and the control tests in

sister clades. Branches selected for the analyses are shown (ω) in different colors (green for

the foreground/cactophilic lineages and red for the background/non-cactophilic lineages).

Only the genes for which no evidence of positive selection on the background lineages were

considered for further analyses (please see Materials and methods section).

(PDF)

S5 Fig. CDA2 gw-RSCU percentile rank in cactophilic species. Cactophilic species belonging

to Phaffomyces, Starmera, Pichia, andMyxozyma genera and their respective non-cactophilic

closest relatives (identified as “out”) were inspected. The data underlying this Figure can be

found in https://doi.org/10.6084/m9.figshare.24114381.

(PDF)

S6 Fig. Ecological associations of cactophilic species and their closest relatives. Species that

have been isolated from clinical contexts, and are emerging opportunistic pathogens, are

highlighted. The ecological information presented was obtained from the CBS database and

available literature according to the substrate of isolation of the type strain.

(PDF)

S7 Fig. Workflow of RER converge analyses. Schematic representation of the workflow for

the detection of convergent evolutionary rates from orthogroup assignment and selection to

RER converge analyses.

(PDF)

S1 Table. List of cactophilic species understudy. Selection of cactus-associated yeasts accord-

ing to the literature (relevant references are shown). Classification of cactophilic yeasts (strict

or transient), geography and substrate of origin is shown for the type strain.

(XLSX)

S2 Table. Raw machine learning results. Features are ranked by feature importance (from

most important to less important). Proportion of presence in cactophilic and non-cactophilic

species are shown for the top 100 most important features for the RF runs using both genomic

and metabolic data. For the RF runs using either genomic or metabolic data separately, only

feature importances are shown.

(XLSX)

S3 Table. List of species used for gene family analyses and RER converge analyses. Cacto-

philic species considered for both analyses are highlighted in bold.

(XLSX)

S4 Table. Gene family analyses results. Duplication events in at least 1 species belonging to

yeast cactophilic group inspected were considered. Only proteins for which functional annota-

tions were possible to obtain from EggNOG are shown.

(XLSX)

S5 Table. RER converge results. Genes that underwent accelerated and decelerated evolution

as well as their putative functions (according to SGD). GO enrichment results are shown.

(XLSX)

S6 Table. Results of positive selection analyses from branch-site tests using PAML and abs-

REL for the 5 cactophilic datasets understudy (Tortispora, Pichia A, Pichia B, Starmera,
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and Phaffomyces). Putative genes from each orthogroup were identified after a BLASTp

search against the nr NCBI database using Saccharomyces (taxid:4930) as the reference. When

no hit was obtained for S. cerevisiae, a BLASTp against the entire nr database was performed

instead.

(XLSX)

S7 Table. GO term enrichment results. GO terms were obtained for all genes using eggNOG-

mapper for genes under positive selection in each clade and for genes under positive selection

in 2 or more clades.

(XLSX)

S8 Table. Top-ranked (95th percentile) genes for gw-RSCU in cactophilic species. Mean

gw-RSCU values were determined with BioKIT [107] and can be accessed in Figshare (https://

doi.org/10.6084/m9.figshare.24114381). CDA2 percentile ranks used for S4 Fig are shown.

(XLSX)

S9 Table. Likelihood ratio test (LRT) values and p-values (before and after BH correction)

for CODEML analyses on cactophilic branches for each of the 5 datasets.

(XLSX)
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Project administration: Carla Gonçalves, Chris Todd Hittinger, Antonis Rokas.
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75. Álvarez-Pérez S, Lievens B, Jacquemyn H, Herrera CM. Acinetobacter nectaris sp. nov. and Acineto-

bacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J

Syst Evol Microbiol. 2013; 63(Pt 4):1532–1539. Epub 2012/08/21. https://doi.org/10.1099/ijs.0.

043489-0 PMID: 22904213.

76. Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, et al. Xantho-

monas diversity, virulence and plant–pathogen interactions. Nat Rev Microbiol. 2020; 18(8):415–427.

https://doi.org/10.1038/s41579-020-0361-8 PMID: 32346148

PLOS BIOLOGY Convergent evolution of yeast cactophily

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002832 September 23, 2024 28 / 32

https://doi.org/10.1099/00207713-48-4-1431
http://www.ncbi.nlm.nih.gov/pubmed/9828447
https://doi.org/10.1099/ijs.0.65460-0
http://www.ncbi.nlm.nih.gov/pubmed/18218961
https://doi.org/10.1073/pnas.1100628108
http://www.ncbi.nlm.nih.gov/pubmed/21536881
https://doi.org/10.1099/00207713-49-1-309
https://doi.org/10.1099/00207713-49-1-309
http://www.ncbi.nlm.nih.gov/pubmed/10028276
https://doi.org/10.1038/nature12511
https://doi.org/10.1038/nature12511
http://www.ncbi.nlm.nih.gov/pubmed/24005325
https://doi.org/10.1093/bioinformatics/btz468
http://www.ncbi.nlm.nih.gov/pubmed/31192356
https://doi.org/10.1186/s12915-018-0498-3
http://www.ncbi.nlm.nih.gov/pubmed/29499717
https://doi.org/10.1046/j.1365-2435.1998.00270.x
https://doi.org/10.3390/metabo9110266
http://www.ncbi.nlm.nih.gov/pubmed/31694329
https://doi.org/10.1111/j.1574-6968.1998.tb13317.x
https://doi.org/10.1111/j.1574-6968.1998.tb13317.x
http://www.ncbi.nlm.nih.gov/pubmed/9851052
https://doi.org/10.1093/molbev/msy077
http://www.ncbi.nlm.nih.gov/pubmed/29684163
https://doi.org/10.1186/s12934-022-01876-4
http://www.ncbi.nlm.nih.gov/pubmed/35879798
https://doi.org/10.1093/molbev/msaa141
http://www.ncbi.nlm.nih.gov/pubmed/32502238
https://doi.org/10.1111/1758-2229.12166
https://doi.org/10.1111/1758-2229.12166
http://www.ncbi.nlm.nih.gov/pubmed/25646533
https://doi.org/10.1186/s12866-018-1310-9
https://doi.org/10.1186/s12866-018-1310-9
http://www.ncbi.nlm.nih.gov/pubmed/30404596
https://doi.org/10.1016/j.femsyr.2005.02.006
https://doi.org/10.1016/j.femsyr.2005.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15925314
https://doi.org/10.1099/ijs.0.043489-0
https://doi.org/10.1099/ijs.0.043489-0
http://www.ncbi.nlm.nih.gov/pubmed/22904213
https://doi.org/10.1038/s41579-020-0361-8
http://www.ncbi.nlm.nih.gov/pubmed/32346148
https://doi.org/10.1371/journal.pbio.3002832


77. Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dick-

eya Model. Prog Mol Biol Transl Sci. 2016; 142:51–92.

78. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of

protein subcellular localization using deep learning. Bioinformatics (Oxford, England). 2017; 33

(21):3387–3395. https://doi.org/10.1093/bioinformatics/btx431 PMID: 29036616

79. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP

5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019; 37(4):420–

423. https://doi.org/10.1038/s41587-019-0036-z PMID: 30778233

80. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Boot-

strap Approximation. Mol Biol Evol. 2018; 35(2):518–522. Epub 2017/10/28. https://doi.org/10.1093/

molbev/msx281 PMID: 29077904; PubMed Central PMCID: PMC5850222.

81. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm

for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32(1):268–274. Epub 2014/11/

06. https://doi.org/10.1093/molbev/msu300 PMID: 25371430; PubMed Central PMCID:

PMC4271533.

82. van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Micro-

biol Biotechnol. 2011; 91(6):1477–1492. https://doi.org/10.1007/s00253-011-3473-2 PMID: 21785931

83. Masoud W, Jespersen L. Pectin degrading enzymes in yeasts involved in fermentation of Coffea arab-

ica in East Africa. Int J Food Microbiol. 2006; 110(3):291–296. Epub 2006/06/21. https://doi.org/10.

1016/j.ijfoodmicro.2006.04.030 PMID: 16784790.

84. Wong ED, Karra K, Hitz BC, Hong EL, Cherry JM. The YeastGenome app: the Saccharomyces

Genome Database at your fingertips. Database (Oxford). 2013; 2013:bat004. Epub 2013/02/12.

https://doi.org/10.1093/database/bat004 PMID: 23396302; PubMed Central PMCID: PMC3567487.
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