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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Ancient divergences within Opisthokonta—a major lineage that includes organisms in the

kingdoms Animalia, Fungi, and their unicellular relatives—remain contentious. To assess

progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon

rich phylogenomic analysis using sets of genes inferred with different orthology inference

methods and established the geological timeline of Opisthokonta diversification. We also

conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based

on filtering criteria previously shown to improve phylogenomic inference. We found that

approximately 85% of internal branches were congruent across data matrices and the

approaches used. Notably, the use of different orthology inference methods was a substan-

tial contributor to the observed incongruence: analyses using the same set of orthologs

showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in

somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relation-

ships suggests that the instability observed across varying gene sets may stem from weak

phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic

framework that will be useful for illuminating ancient evolutionary episodes concerning the

origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance

of investigating effects of orthology inference on phylogenetic analyses to resolve ancient

divergences.
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Introduction

Opisthokonta, a monophyletic supergroup containing animals, fungi, and their unicellular rel-

atives (Fig 1A) [1–3], is divided into 2 main lineages: Holomycota [4], containing fungi and

their unicellular relatives (e.g., Nucleariida), and Holozoa [5,6], which includes Metazoa (Pori-

fera, Placozoa, Ctenophora, Cnidaria, and Bilateria) and their unicellular relatives (e.g., Choa-

noflagellata [7], Filasterea [8], Ichthyosporea [9,10], and Pluriformea/Corallochytrea (hereafter

referred to as Pluriformea) [11]) (Fig 1B). Establishing evolutionary relationships among

major lineages of Opisthokonta is key for illuminating the origins of animals and fungi, as well

as of complex phenotypes like multicellularity [11–18].

In retrospect, research into the evolutionary relationships within the Opisthokonta super-

group has often focused on in-depth analyses of specific clades or lineages (e.g., [21–25]).

These studies have frequently yielded conflicting hypotheses or provided equivocal support for

phylogenetic relationships among some higher taxonomic ranks within Opisthokonta. Notable

examples of such ambiguity within Holozoa include the relationships of unicellular holozoans

[11,14,18,19,26], the root position of the animal tree between Ctenophora and Porifera

[23,24,27–34], and the placement of Xenacoelomorpha—potentially a sister lineage to bilater-

ians [35–38] or a member of Deuterostomia [39–41]. Ambiguity also exists for certain rela-

tionships within Holomycota, such as the placements of zoospore-producing fungi

(Blastocladiomycota and Chytridiomycota) [19,25,34,42–45] and the parasitic fungus Olpi-
dium [46,47] on the fungal phylogeny.

Phylogenomic approaches that use genome-scale data have become the gold standard for

understanding the evolution of the Opisthokonta tree of life [25,48–52]. Opisthokonta repre-

sents a remarkably diverse supergroup, but so far phylogenomic analyses of the entire super-

group have frequently been hampered by sparse taxon sampling and incomplete lineage

representation (e.g., previous data matrices contained 78 genes from 58 taxa [14], 93 genes

from 83 taxa [19], 255 genes from 38 taxa [11], and 201 genes from 75 taxa [18]). These data

matrices captured a very small part of the full genetic diversity of the supergroup, suggesting

that more in-depth data matrices and investigations of phylogenetic relationships are neces-

sary. Furthermore, phylogenomic investigations of ancient divergences are prone to systematic

and analytical errors that give rise to incongruence [53,54]. One type of error that is often over-

looked is the effect of gene selection on phylogenomic inference. Variability in gene selection

between studies stems from the diverse methodologies employed in identifying and choosing

genes for inclusion in phylogenetic matrices. It has been shown that different gene sets, dic-

tated by varying orthology inference methods, can markedly alter phylogenetic reconstruc-

tions [55]. Despite this, studies considering the impact of orthology inference on species tree

reconstruction are scarce [56,57].

Typically, a “well-established” phylogeny should be robustly supported by independent

data sources, experimental designs, and methodologies [30]. In this study, we leverage

extensive genomic data from 348 taxa spanning 33 major lineages (recognized at phylum

level, S3 Table) to reconstruct a comprehensive genome-scale phylogeny of the supergroup

Opisthokonta and its timescale of diversification. We build 3 data matrices to assess the

impact of different orthology inference methods on the resulting topologies. Through the

exploration of multiple phylogenetic reconstruction parameters, we test for susceptibility to

systematic errors and evaluate the robustness of our phylogenetic conclusions. The results

of this study represent a nuanced understanding of the complexities in resolving the evolu-

tionary relationships within Opisthokonta and bring the importance of orthology inference

benchmarking into focus.
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Fig 1. DiversityAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to5:Pleaseverifythatallentriesarecorrect:of major Opisthokonta lineages and incongruence across the Opisthokonta tree of life, and a workflow for examining evolutionary

relationships. (A) (1) Common earthworm Lumbricus terrestris (Annelida); (2) California sea hare Aplysia californica (Mollusca); (3) common bugula, Bugula

neritina (Bryozoa); (4) melon fly Zeugodacus cucurbitae (Arthopoda); (5) crown-of-thorns starfish Acanthaster planci (Echinodermata); (6) lancelets

Epigonichthys hectori (Cephalochordata); (7) great blue spotted mudskipper Boleophthalmus pectinirostris (Actinopterygii and Chordata); (8) réunion gray

white-eye Zosterops borbonicus (Aves and Chordata); (9) Southern red muntjac Muntiacus muntjak (Mammalia and Chordata); (10) peach blossom jellyfish
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Results and discussion

Phylogenomics uncovers a broadly supported Opisthokonta tree of life

To infer the Opisthokonta tree of life, 3 data matrices with high taxon sampling and gene occu-

pancy were constructed using different orthology inference methods and rigorous quality con-

trol measures, termed BUSCO, OrthoFinder, and Tikhonenkov_2020, respectively, reflecting

the origin of phylogenomic markers. The BUSCO data matrix includes 228 genes, the Ortho-

Finder matrix comprises 440 genes, and the Tikhonenkov_2020 matrix contains 201 genes

(Fig 1C and Tables 1 and S2). The evolutionary history of Opisthokonta was inferred using

both site-homogeneous and -heterogeneous models. These analyses produced 18 phyloge-

nomic trees: 3 data matrices (BUSCO, OrthoFinder, and Tikhonenkov_2020) * 2 versions (full

data matrix and rogue taxon pruned) * 3 modeling schemes (LG+I+G4, LG+PMSF(C60)+G

+F, GTR+CAT+PMSF, hereafter referred to as LG, LG+C60, GTR+CAT). We found that

approximately 85% of internal branches were congruent across the 18 trees, suggesting that a

large fraction of bipartition in the Opisthokonta phylogeny were consistently supported (S4

Table and S1 Data). Within Holozoa, notable examples of relationships recovered uniformly

in our results include Ctenophora as the sister group of the remaining Metazoa; this grouping

was also stable in the subsampling analysis designed to detect potential biases (except for

BUSCO#4 matrix with 60 taxa under GTR+CAT model) (Fig 2A and 2B and S1 Data). The

very high consistency (80 out of 81 analyses, S5 Table) provides support for the hypothesis that

ctenophores are the closest relatives of all other metazoans [23,28,33,34,58,59]. Furthermore,

our results recapitulate many deep relationships recovered in previous phylogenomic studies:

Bilateria, Deuterostomia, Ecdysozoa, Lophotrochozoa, Protostomia are all recovered

[21,58,60–63], and we recover Xenacoelomorpha as the sister group to Bilateria (the Nephro-

zoa hypothesis) [35–38,64]. Our results also support the sister relationship of Filasterea to a

Choanoflagellatea and Metazoa group (Filozoa hypothesis) [4,8,65], although this grouping is

not always robustly supported (Fig 2A and 2B and S1 Data).

Among Holomycota, examples of relationships recovered consistently in our results include

the monophyly of the Dikarya subkingdom [67], comprising the Ascomycota and Basidiomy-

cota phyla, which received maximal support across all analyses. Mucoromycota was recovered

as the sister group of Dikarya [44] and Zoopagomycota is sister to both lineages [68].

Craspedacusta sowerbii (Cnidaria); (11) Spongilla lacustris (Porifera); (12) warty comb jelly Mnemiopsis leidyi (Ctenophora); (13) Salpingoeca gracilis
(Choanoflagellatea); (14) Ministeria vibrans (Filasterea); (15) Suillus luteus (Basidiomycota); (16) Baker’s yeast Saccharomyces cerevisiae (Ascomycota); (17)

Phycomyces blakesleeanus (Mucoromycota); (18) Synchytrium papillatum (Chytridiomycota); (19) Rhopalomyces elegans (Zoopagomycota); (20) Nuclearia
thermophila (Nucleariida). Images 7, 14, 16, and 20 are available in the public domain and were sourced from Wikimedia Commons (https://commons.

wikimedia.org/wiki/Main_Page). The rest of the images were retrieved from iNaturalist (https://www.inaturalist.org/). All images are credited to various artists

under Creative Commons licenses with slight modifications. For specific author names, hyperlinks to the images, and copyright license details, please refer to

S1 Table. (B) Schematic representation of the phylogenetic relationships of Opisthokonta based on recent molecular phylogenies [11,19,20]. Dashed branches

reflect uncertain relationships across Opisthokonta. (C) A workflow that broadly samples gene and model space and implements sensitivity analyses to dissect

sources of error. Data matrices are referenced throughout the text as BUSCO, OrthoFinder, and Tikhonenkov_2020. Subsampled data matrices have numbers

following the “#” character reflecting the filtering step used to generate them. Each step of the sensitivity test was conducted independently. Detailed

information on each data matrix is provided in S2 Table, and explanations for each subsampling strategy are outlined in the Methods section. BUSCO,

Benchmarking Universal Single-Copy Orthologs.

https://doi.org/10.1371/journal.pbio.3002794.g001

Table 1. Summary statistics of 3 phylogenomic data matrices.

Data matrix Number of genes Number of sites Average taxon occupancy Average gene length Average site occupancy

BUSCO 228 72,657 79.9% 319 67.1%

OrthoFinder 440 113,123 85.6% 257 68.9%

Tikhonenkov_2020 201 95,808 87.0% 477 72.6%

https://doi.org/10.1371/journal.pbio.3002794.t001
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Supporting a recent study, a Nucleariida clade consisting of Parvularia atlantis, Fonticula alba,

and Lithocolla globosa was recovered as the sister lineage to the rest of the Holomycota [69]

(Fig 2A and 2B and S1 Data).

A timescale for Opisthokonta diversification

A Bayesian relaxed molecular clock calibrated with 10 widely accepted fossil calibration points

(S6 Table) facilitated estimating divergence times of Opisthokonta evolution (Figs 3 and S1

and Table 2). Estimates remain consistent across different root ages (average differences 1%,

Fig 2. Comparison of trees obtained using IQ-TREE with the LG+C60 model from BUSCO and OrthoFinder data matrices. (A) The topology of the

IQ-TREE 2 inference with the BUSCO data matrix#2 using the LG+C60 model. (B) The topology of the IQ-TREE 2 inference with the OrthoFinder data

matrix#2 using the LG+C60 model. The resulting topologies of the C60 model are treated as the preferred topologies because they show the least gene tree and

species tree discordance evaluated using Robinson–Foulds distance [66]. Unlabeled nodes received UFB support above 95. The cladograms are phylum-level

depiction of phylogram relationships. (C) The distribution of topology supported across data matrices and evolutionary models, colored according to topology

supported. The grids correspond to 4 contentious nodes labeled in panel A and B. From left to right, the first grid concerns the relationships between

Pluriformea and Ichthyosporea, the second grid concerns whether Ctenophora or Porifera is the sister lineage to the rest of the Metazoa. The third grid refers to

the relationships between Placozoa and Cnidaria, and the fourth grid correspond to the branching order of Blastocladiomycota and Chytridiomycota, the “B,”

“O,” “T” represents BUSCO, OrthoFinder, and Tikhonenkov_2020 data matrix, respectively. The original tree files underlying this figure can be found in

https://doi.org/10.6084/m9.figshare.23301824.v1. BUSCO, Benchmarking Universal Single-Copy Orthologs; UFB, ultrafast bootstrap.

https://doi.org/10.1371/journal.pbio.3002794.g002
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Fig 3. Time-calibrated phylogeny of 348 species spanning the diversity of opisthokonts. Divergence time estimation using MCMCTree with a topology

reconstructed from the concatenation-based maximum likelihood analysis of OrthoFinder#1 data matrix using the LG+C60 model. The bar plot next to each species

indicates genomic quality assessed using BUSCO. “Complete” indicates the fraction of full-length BUSCO genes; “Duplicated” indicated if there were 2 or more

complete predicted genes for one BUSCO gene, “Fragmented” indicates the fraction of genes with a partial sequence, and “Missing” indicates the fraction of genes not

found in the genome (S3 Table). Images from phylopic.org. Red diamonds represent nodes on which fossil calibration constraints were imposed. The timescale is in 100

millions of years before present. Detailed time trees could be found in S1 Data. BUSCO, Benchmarking Universal Single-Copy Orthologs.

https://doi.org/10.1371/journal.pbio.3002794.g003

Table 2. Inferred 95% confidence time intervals for the various Opisthokonta clades, in millions of years before present (root age constrained to 1.5 billion years).

Crown group min max width mean

Opisthokonta 978.74 1,187.57 208.83 1,083.16

Holomycota 890.12 1,101.86 211.74 995.99

Holozoa 913.81 1,093.88 180.07 1,003.85

Choanozoa 810.4 937.27 126.87 873.84

Metazoa 745.51 837.75 92.24 791.63

Porifera-ParaHoxozoa 699.84 786.49 86.65 743.17

Bilateria 632.39 667.28 34.89 649.84

Deuterostomia 582.71 627.28 44.57 605.00

Ecdysozoa 544.71 594.87 50.16 569.79

Lophotrochozoa 574.54 608.52 33.98 591.53

Chordata 530.31 595.14 64.83 562.73

Ecdysozoa-Lophotrochozoa 596.08 632.01 35.93 614.05

Ascomycota 409.69 606.29 196.6 507.99

Basidiomycota 411.14 611.87 200.73 511.51

Mucoromycota 491.24 673.35 182.11 582.30

Zoopagomycota 583.87 758.99 175.12 671.43

Chytridiomycota 531.05 761.92 230.87 646.49

Obazoa 1,077.05 1,334.8 257.75 1,205.93

https://doi.org/10.1371/journal.pbio.3002794.t002
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S7 Table and S1 Data), consequently, we focus our discussion on results obtained using a root

age constraint of 1.5 billion years. Our analyses suggest that Opisthokonta originated approxi-

mately 1,083.2 million years ago (Mya) (95% credibility interval (CI) ranging from 978.7 to

1187.6 Mya). This result falls in the interval estimated by Eme and colleagues [70] and Parfrey

and colleagues [71] across different root positions and varying molecular clock models. Holo-

mycota is estimated to be approximately 996 Mya (95% CI: 890.1 to 1,101.9 Mya) and Holozoa

emerged slightly earlier at roughly 1,003.8 Mya (95% CI; 913.8 to 1,093.9 Mya) (S1A Fig). The

origin of animals, marking the emergence of animal multicellularity, began approximately

791.6 million years ago (95% CI: 745.5 to 837.8 million years ago) during the Tonian period.

This timeline aligns with the widely accepted framework for animal diversification, which pre-

dicts Neoproterozoic divergences [72], and it matches the age of the oldest uncontested animal

fossils [73,74] more closely compared to earlier studies that unaccounted for the rate variations

of molecular evolution [75]. Our analysis also suggests origination time of Ctenophora are

considerably younger than Cnidaria and Porifera, consistent with a previous study [28]. The

estimated divergence time between protostomes and deuterostomes was approximately 615.9

to 651.6 Mya (mean: 633.8).

Within Holomycota, the origin of the kingdom Fungi—sister clade to Nucleariida—was

dated to approximately 929.2 Mya (95% CI, 825.2 to 1,033.3 Mya). This estimate is consistent

with the oldest putative fossil of fungi, dated approximately between 1,010 and 890 Mya [76].

However, it is important to note that the earliest unambiguously accepted fungal fossil, verified

through microscopic and spectroscopic techniques, dates to 810 to 715 Mya [77]. The origin of

terrestrial fungi was estimated at 731.7 Mya (95% CI: 645.1 to 818.2 Mya), in line with a previ-

ous report [43]. The origin of Dikarya was estimated to be around 623.9 Mya (95% CI: 539.3 to

708.4 Mya).

To compare the rate of diversification across major lineages of Opisthokonta, we utilized a

lineage-through-time (LTT) plot [78,79] to examine the temporal patterns of diversification

within 12 defined subgroups (S1 Fig caption). This analysis involved plotting the logarithm of

the number of taxa in each subgroup across various time slices (S1B Fig). Notably, the time

span from late Neoproterozoic to early Cambrian marked a period of pronounced diversifica-

tion among major animal groups, such as Lophotrochozoa and Deuterostomia (S1B Fig), likely

reflecting the Cambrian radiation of animals [80]. However, the LTT plots for fungal sub-

groups do not adequately capture the documented drastic increase in diversification rates

within the kingdom fungi, such as the radiation of Leotiomyceta beginning around 450 million

years ago [81].

By increasing our taxon sampling and employing advanced analytical techniques, this study

infers the first detailed timetree of Opisthokonta. These results may inform the testing of

hypotheses that tie the emergence of lineages and phenotypes to specific geologic events. For

example, molecular dating analyses have consistently placed the emergence of animals in the

Tonian-Cryogenian period, approximately 850 to 635 Mya [73,80,82], broadly coinciding with

the rise in atmospheric oxygen levels and changes in the phosphorus cycle [83,84]. The detailed

temporal diversification patterns revealed among key Opisthokonta subgroups provide valu-

able insights into the evolutionary trajectories that have shaped current biodiversity, enhanc-

ing our understanding of how geological and environmental factors have influenced

diversification of Opisthokonta.

Incongruences in the Opisthokonta phylogeny

Approximately 15% of bipartitions in the Opisthokonta phylogeny, some affecting higher

opisthokont taxonomic ranks, were unstable across data matrices and approaches used. Below,
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we discuss key incongruent relationships of interest. For each case of instability, we detail the

outcomes from different data matrices and analytical methods and highlight where these dif-

ferences significantly impact the results (S5 Table and S1 Data).

Uncovering novel relationships among unicellular holozoans

One notable example of incongruence concerned the relationships among unicellular ances-

tors of animals. Resolving ancient branching patterns among unicellular Holozoa have proven

recalcitrant, wherein different phylogenomic studies support conflicting topologies or are

equivocal in support [11,14,18–20]. Our analyses using the BUSCO and Tikhonenkov_2020

data matrices recovered a novel resolution where Pluriformea is the sister group to the remain-

ing holozoans (Pluriformea-sister hypothesis, Fig 2A and S1 Data). In contrast, the OrthoFin-

der data matrix suggests that Pluriformea is the sister taxon to Ichthyosporea (known as the

Teretosporea group), as reported in previous studies [19,20,26] (Teretosporea-sister hypothe-

ses, Fig 2B and S1 Data). Relationships among unicellular Holozoa are robust to substitution

model complexity, except for one instance in which the BUSCO#1 matrix with GTR+CAT

model weakly supported Teretosporea-sister (UFB = 23, S1 Data). Surprisingly, the third alter-

native topology, which supports Ichthyosporea as the sister taxon to all other Holozoa

(Ichthyosporea-sister hypothesis) [11,18] was not recovered in our analyses.

Recent studies have uncovered that the unicellular ancestors of animals have a suite of

genetic elements traditionally associated with animal multicellularity (such as cell adhesion,

signaling, and transcriptional regulation) [2,11,20,26]. Consequently, the branching order of

unicellular relatives of animals is essential for interpreting the sequence of events that led to

the emergence of animals and their potential contributions to the origin of multicellularity.

For example, the Ichthyosporea-sister hypothesis suggests that an animal-like extracellular

matrix (ECM) structure arose in a common ancestor shared by Pluriformea, Filasterea, Choa-

noflagellata, and Metazoa, subsequent to their evolutionary split from the Ichthyosporea [11].

Interestingly, despite utilizing the same gene set as Tikhonenkov and colleagues [18], our anal-

ysis yielded a different topology (Pluriformea-sister hypothesis versus Ichthyosporea-sister

hypothesis), marking this as a particularly intriguing case that warrants further investigation,

as discussed below.

Revisiting the placement of Placozoa

The position of Placozoa also showed conflict: the Tikhonenkov_2020 matrix supports the sis-

ter relationship between Cnidaria and Bilateria with Placozoa as sister to this clade (Fig 2C and

S1 Data). In contrast, the BUSCO and OrthoFinder matrices recovered a sister taxon relation-

ship between Placozoa and Cnidaria (Fig 2C and S1 Data). This discrepancy was reported

before and has been attributed to the effect of compositional heterogeneity [85,86]. Specifically,

Laumer and colleagues [85] generated 2 ortholog sets, with one indicating a sister relationship

between Placozoa and Cnidaria (derived from OrthoFinder orthologs), and the other position-

ing Placozoa as a sister lineage to both Cnidaria and Bilateria (using BUSCO genes). Through

a null-simulation test for compositional bias, they suggested that the latter topology might be

an artifact of compositional heterogeneity. In a subsequent study, Laumer and colleagues [86]

reinforced the support for the Placozoa + Cnidaria clade by employing a data matrix that

reduces compositional heterogeneity through Dayhoff recoding.

Notably, our subsampling analysis demonstrates the potential impact of compositional het-

erogeneity, as well as missing data on the phylogenetic topology derived from the Tikhonen-

kov_2020 data matrix: excluding genes with high compositional heterogeneity (measured by

RCFV scores, see Methods section) alters the resulting topologies but favors neither 2
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hypotheses (S5 Table and S1 Data); excluding genes with high amount of missing data shifts

the support towards the sister relationship between Placozoa and Cnidaria. However, the influ-

ence of gene subsampling based on different criteria appears to be matrix specific and not uni-

versally effective across different data sets.

The relationships between Chytridiomycota and Blastocladiomycota

The relationships between flagellated zoosporic fungi Blastocladiomycota and Chytridiomy-

cota have been contentious [25,42–45]. Understanding the phylogenetic placement of Blasto-

cladiomycota, which display many terrestrial fungal characteristics including developed

hyphae, spore-bearing structures for the dissemination of sexual and asexual spores, closed

mitosis, β-1-3-glucan cell walls, and a Spitzenkörper [87,88], is crucial for elucidating the evo-

lution of structural complexity, reproductive strategies, and adaptive mechanisms that have

shaped fungal diversity. In our analysis, we observed that Blastocladiomycota as sister to Chy-

tridiomycota and other fungi is consistently recovered using the site-homogeneous LG+I+G4

model. Conversely, the designation of Chytridiomycota as the sister group to the rest of the

fungi could only be recovered under site-heterogeneous models, though this is not observed

across all data matrices (Fig 2C and S5 Table and S1 Data). For example, analyses using the

BUSCO and OrthoFinder data matrices with the C60 model still recover the same topology as

produced by the site-homogeneous model (Fig 2B and 2C and S5 Table and S1 Data). Notably,

recent studies using site-heterogeneous models (e.g., C models and CAT) support the diver-

gence of Blastocladiomycota following that of Chytridiomycota [45,89].

In addition, the placement of the endoparasitic zoosporic fungus Olpidium was unstable

and data matrix dependent. OrthoFinder and Tikhonenkov_2020 data matrices strongly sup-

ported Olpidium as sister to a clade of non-flagellated terrestrial fungi (Fig 2B and S1 Data), in

line with the most parsimonious explanation for the loss of the fungal flagellum [47,89,90].

However, the BUSCO data matrices supported Olpidium nested within non-flagellated fungi,

either as the sister group of Mucoromycota, or as the sister group to Dikarya (Fig 2A and

S1 Data).

Different orthology inference methods contribute to incongruence

Phylogenetic analysis using different models and sensitivity analysis—reinferring species-level

relationships using 18 subsampling strategies—revealed high degrees of congruence in analy-

ses of the same data matrix, but not in analyses of different data matrices. Specifically, phyloge-

nies inferred using BUSCO, OrthoFinder, and Tikhonenkov_2020 data matrices and their

subsets shared 97.5%, 98.2%, and 97.3% of bipartitions, respectively, whereas the average

bipartitions shared among different data matrices were 87.7% (BUSCO versus Tikhonen-

kov_2020), 88.8% (OrthoFinder versus Tikhonenkov_2020), and 90.8% (BUSCO versus

OrthoFinder) (Fig 4 and S4 Table).

The very high congruence within the same ortholog set and the varying sensitivity to

approaches used (modeling schemes and subsampling analysis) suggest gene sets derived

using different orthology methods might be a source of incongruence for the Opisthokonta

phylogeny. To explore this possibility further, we first analyzed the gene overlap among the 3

data matrices. The results revealed significant disparities: about 44% (100 out of 228) of the

BUSCO genes were recovered by OrthoFinder data matrix, while BUSCO and OrthoFinder

contain only about 22% (44 out of 201) and 30% (61 out of 201) of the genes present in the

Tikhonenkov_2020 data matrix, respectively (S8 Table). Approximately half of the genes in

each data matrix are absent in the other two, with only 19 genes present across all 3 data matri-

ces (S2A Fig and S9 Table). Additionally, there is variation in the functional categories
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represented in each matrix. For example, the Translation (J) category is the most abundantly

represented in both the BUSCO (15.2%) and Tikhonenkov_2020 (22.1%) matrices while the

OrthoFinder matrix is dominated by the secondary metabolism (O) category (14.5%)

(S2B Fig).

Due to functional constraints and different evolutionary trajectories, genes may contain

positions that vary in their functional constraint, resulting in varying saturation levels among

data sets [53]. To test this hypothesis, we quantified the saturation level of the data matrices fol-

lowing Philippe and colleagues (48) using PhyKIT [92]; data with no saturation will have a

value of 1, while a value of 0 means complete data saturation. We found that the Tikhonen-

kov_2020 data matrices were the most saturated (approximately 0.12) and that the

Fig 4. Heatmap of topological similarities for all pairwise comparisons among the phylogenies reconstructed from 39 data

matrices (#2, #8–19). The topological congruence between each pair of phylogenies was calculated using GoTree [91], function

“compare.” To ensure that only highly supported relationships are illustrated, nodes with UFB support less than 95 were collapsed prior

to comparison. The color of the squares represents the percentage of bipartitions (n/344) shared between trees. Results from data

matrices#3–7 are not compared here since they do not share the same number of tree tips. A dendrogram constructed from a Euclidean

distance matrix—calculated based on the number of shared bipartitions across data sets—is provided in S3 Fig. Full illustration of the

resulting topologies could be found in S1 Data. The code used to generate this plot is available in https://doi.org/10.6084/m9.figshare.

23301824.v1. UFB, ultrafast bootstrap.

https://doi.org/10.1371/journal.pbio.3002794.g004
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OrthoFinder data matrices were the least affected by multiple substitutions (approximately

0.24). The varying degrees of saturation may contribute to the observed incongruence among

the 3 data matrices (S10 Table).

In assessing the relative quality of different ortholog sets, we focused on their “information

content” through a sensitivity analysis of submatrices derived from 3 data matrices. We evalu-

ated several metrics using PhyKIT including average bootstrap score, saturation, Robinson–

Foulds distance, and treeness/RCV—a measure indicates signal-to-noise ratio and susceptibil-

ity to composition bias. Statistical analysis using ANOVA demonstrated no significant differ-

ences in average bootstrap support (p-value = 0.94) and Robinson–Foulds distance (p-

value = 0.52) among the data matrices. However, submatrices derived from OrthoFinder

exhibited significantly lower saturation levels (p-value = 1.91e-14) and higher treeness/RCV

values (p-value = 7.87e-32), indicating a potentially superior information content. These

results suggest that the OrthoFinder data matrix may provide enhanced robustness for phylo-

genetic analyses.

Our results suggest that variation in ortholog selection between data matrices is a significant

contributor to incongruence. Notably, recent investigations have documented significant vari-

ances in both the orthologs identified and the resulting phylogenetic trees when employing

diverse orthologous group reconstruction methodologies [49,55,93]. Despite the availability of

various automated orthology inference methods, achieving standardized ortholog benchmark-

ing remains a challenge. This issue affects not only phylogenetic analysis but also extends to

broader aspects of evolutionary biology, such as comparative genomic analysis, the identifica-

tion of chromosome fusions, and more. Evaluating multiple orthology inference methods and

comparing how they affect species tree reconstruction should be considered a good practice in

refining phylogenetic histories.

The intricacies of unicellular holozoan relationships

Relationships within unicellular holozoans were a particularly interesting example of the effect

of different orthology inference methods on phylogenetic reconstruction. Observing differing

results despite utilizing the same gene set as a previous study prompted us to undertake a com-

prehensive investigation to explore these discrepancies. Specifically, despite using the same set

of genes and evolutionary models with similar complexity (CAT+GTR+PMSF here versus

CAT+GTR in the original study) [18], the Tikhonenkov_2020 matrix here recovered Plurifor-

mea-sister hypothesis, a topology that has not been recovered previously. In contrast, the origi-

nal analyses by Tikhonenkov and colleagues [18] provided support for the Ichthyosporea-

sister hypothesis (Fig 5A). This topology was not recovered in our analysis and was rarely

observed among UFB approximated trees, indicating that it received minimal support (Fig 5B

and S11 Table).

In addition, sensitivity analysis revealed no significant predictors of topological preference.

Although the removal of 20% of the missing data led to topological changes in unicellular

holozoans, this resulted in a topology that is likely to be erroneous [14]. Moreover, the effects

of data removal were not consistent (Fig 5B), the possibility of this result simply being due to a

decrease in the number of positions analyzed cannot be excluded. These findings imply that

factors beyond the orthology inference methods and systematic errors tested may be influenc-

ing the results.

A key difference between this study and Tikhonenkov and colleagues [18] is the number of

taxa sampled, raising the hypothesis that increased taxon sampling density could affect the

relationships of unicellular holozoans. To test this hypothesis, we created submatrices by

down-sampling data sets to a number of taxa comparable to previous studies [11,18–20] (Ntaxa
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Fig 5. Integrated analysis of alternative phylogenetic hypotheses. (A) Alternative hypotheses of the relationships of unicellular holozoans. Studies that

support these hypotheses are listed below each tree; studies with an asterisk are results from this study. The 3 hypotheses from left to right are Pluriformea is the

sister lineage to the rest of the Holozoa, a clade of Pluriformea + Ichthyosporea as the sister lineage to the rest of the Holozoa, and Ichthyosporea as the sister

lineage to the rest of the Holozoa, respectively. (B) Bootstrap support values for alternative hypotheses across different data sets are presented. The stack bar

plots indicate the occurrence frequencies of each topology in 1,000 UFB trees. (C) Topological differences among different taxon-sampling densities and

modeling schemes. Initially, we selected 60 taxa to cover the diversity of Opisthokonta; subsequent increments in taxon sampling were done by randomly
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= 60; data matrices #4) and conducted phylogenetic inference using the CAT-GTR model

under the PMSF assumption (S2 Table). As anticipated, the topology of Tikhonenkov_2020#4

(60 taxa) shifted to support the Ichthyosporea-sister hypothesis (Fig 5C), aligning with the

results of [18]. In contrast, expanding the sampling density to 180, 240, and 347 taxa led to

robust support for the Pluriformea-sister hypothesis (Fig 5C and S1 Data). Notably, Ichthyos-

porea-sister topology was also recovered when down-sampling BUSCO data matrix to 120

taxa (Fig 5C and S1 Data). To examine the potential influence of outgroup sampling on this

part of the tree, we excluded remote outgroups and restricted our analysis to taxa from Holo-

zoa and Holomycota with 3 rogue removed data matrices, both BUSCO and Tikhonen-

kov_2020 data matrices inferred identical unicellular holozoa relationships (Pluriformea-

sister) as in analyses performed with full outgroup sampling, suggests that the Pluriformea-sis-

ter hypothesis is likely not an artifact driven by the inclusion of distant outgroups. These analy-

ses suggest taxon sampling density plays a significant role in shaping the phylogenetic

landscape of unicellular holozoans. The impact on the resulting topology, however, depends

on the specific matrix employed.

To further explore incongruence in relationships of unicellular holozoans across 3 data

matrices, we employed gene-wise likelihood scores (ΔGLS values) and concordance factors to

quantify the phylogenetic signal for 2 contrasting topologies (Pluriformea-sister and Teretos-

porea-sister) across 3 data matrices. The results of ΔGLS values indicate varying strengths of

phylogenetic signals across data matrices. Specifically, the OrthoFinder#2 data matrix had

stronger phylogenetic signals than the other 2 (average |ΔGLS| = 5.33, compared to 2.68

Tikhonenkov_2020#2 matrix and 1.91 in BUSCO#2 matrix). Despite these differences, the

proportions of genes supporting 2 hypotheses were close to a 50–50 ratio across all matrices

(Fig 5D and S12 Table), suggestive of ambiguous phylogenetic signals regarding this part of

the tree. Furthermore, the distribution of gene- and site-concordance factors (gCF and sCF,

respectively)—measures for quantifying genealogical concordance in phylogenomic data sets,

showed low gene tree concordance, contentious nodes with high UFB support constantly had

low gCF scores (Fig 5E and S13 Table). For example, despite the Teretosporea-sister hypothesis

being strongly supported using the OrthoFinder#2 matrix under a site-homogeneous model

(UFB support = 98), gCFs revealed that only 0.7% (3/426) of individual loci supported the Ter-

etosporea-sister hypothesis, and up to 98.6% (420/426) of gene trees supported topologies

other than the 3 candidate topologies. Examining sCF values revealed substantial noise among

single sites evidenced by a similar proportion of support for each hypothesis (34.04/32.98/

32.98; S13 Table).

Robust phylogenetic relationships across various orthology methods may reflect strong

phylogenetic signals in the data [93]. Examination of the distribution of support from individ-

ual genes reveal weak signals in single loci and their respective sites regarding the relationships

of unicellular holozoans, might be the underlying reason for the lack of robustness to different

orthology inference methods. In cases when signals are weak, comparing the performance of

different orthology methods becomes particularly crucial. The observed scarcity of phyloge-

netic signals in our study underscores the need for further research to confidently resolve the

relationships among unicellular holozoans. Future investigations will benefit from the precise

selecting additional sets of 60 taxa at each step. (D) Bar plot of the difference in gene log-likelihood scores (ΔGLS) between the 2 hypotheses recovered in this

study. Proportions of genes supporting each of 2 alternative hypotheses for 3 data matrices are also shown. The ΔGLS values for the genes across each data

matrix can be found in the S12 Table. We considered a gene with an absolute value of log-likelihood difference of 2 as a gene with strong (|ΔGLS|> 2) or weak

(|ΔGLS|< 2) phylogenetic signal. (E) The distribution of gCFs and sCFs across all nodes of the Opisthokonta tree. Critical nodes concerning the relationships

of unicellular Holozoa were labeled. The actual values of gCF, sCF, and UFB for the nodes concerning the relationships of unicellular holozoans were labeled

on the schematic tree. The data and code underlying this figure is available at https://doi.org/10.6084/m9.figshare.23301824.v1. The script for panel E can be

found in http://www.robertlanfear.com/blog/files/archive-2018.html. gCF, gene concordance factor; sCF, site concordance factor; UFB, ultrafast bootstrap.

https://doi.org/10.1371/journal.pbio.3002794.g005
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identification of orthologs and the inclusion of additional genomic data from unicellular Holo-

zoa to clarify the currently uncertain relationships.

Conclusion

In this study, we curated three phylogenomic matrices with high taxon sampling and occu-

pancy; we analyzed these matrices using a phylogenomic workflow (Fig 1C) that we devised to

examine artifacts and evaluate the robustness of phylogenomic inference. Using this workflow,

we inferred a genome-scale and taxon-rich phylogeny of Opisthokonta with a timescale of

diversification from the Mesoproterozoic era to the present and identified contentious

branches warranting further investigation (Figs 2 and 3). Our analyses reveal that varying gene

sets from different orthology methods contribute to incongruence in the Opisthokonta tree of

life. Together with previous reports [11,18–20], 3 topologies have received support concerning

the root of the Holozoa tree (Fig 5A), our analysis underscores the crucial role of taxon sam-

pling density in shaping these relationships (Fig 5C). However, the weak phylogenetic signals

observed suggest that resolving this part of the tree remains one of the most challenging enig-

mas in the phylogenomic era (Fig 5D and 5E). Additional genomic data from unicellular

holozoans may be key to achieving further resolution. Our study assesses the current state of

progress toward a fully resolved Opisthokonta tree of life; the methodologies developed herein

could be adapted for detailed investigations into other lineages within the tree of life.

Methods

Data acquisition

Genome and transcriptome data for over 800 Opisthokonta species were retrieved from public

databases. Transcriptome data were included due to the limited availability of genomic data

for certain lineages, such as unicellular holozoans, Ctenophora, Porifera, and Cnidaria. Repre-

sentatives of fast-evolving lineages containing pathogens and parasites known to cause long-

branch attraction (LBA) were excluded (i.e., Microsporidia, Platyhelminthes, Nematoda)

[60,94]. To minimize the amount of missing data and remove potential low-quality genomes/

transcriptomes, completeness was assessed using the Benchmarking Universal Single-Copy

Orthologs (BUSCO) v5.02 [95] pipeline with the eukaryotic_odb10 database (255 near-univer-

sally single-copy orthologs or BUSCO genes; last accession date: June 14, 2022) [96]. BUSCO

genes were classified as single-copy, duplicated, fragmented, or missing based on the presence/

absence, copy number, and length of the predicted BUSCO gene; the fraction of single-copy

BUSCO genes present is a proxy for assembly completeness. With the exception of unicellular

lineages and non-bilaterian animal lineages, other taxa were filtered based on BUSCO gene

completeness while also ensuring a balanced representation of different Opisthokonta lineages.

The final list contained 339 Opisthokonta species (217 genomes and 122 transcriptomes).

Additionally, 9 outgroup taxa were downloaded from NCBI (last accession date: December 17,

2022) based on the current understanding of Opisthokonta phylogeny [14,19] (S3 Table). Our

study presents the most comprehensive collection of unicellular holozoans to date, incorporat-

ing genome data from 4 Filasterea species [17]. We have also included genomic and transcrip-

tomic data from an extensive set of 10 Ichthyosporea species, along with data from 2

Pluriformea taxa: Corallochytrium and Syssomonas.

Construction of 3 phylogenomic data matrices

Orthology inference plays a crucial role in the phylogenomic analyses. Despite the burgeoning

of available methods, their impact on downstream phylogenetic analysis was rarely compared,
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and few studies have regarded orthology methods as an influencing factor in phylogenetic

reconstructions [56,57]. To explore the performance of different ortholog inference methods

in the context of Opisthokonta tree of life, we constructed 2 novel data matrices using different

strategies—that is, targeted identification of phylogenomic markers (BUSCO) and de novo

inference (OrthoFinder), both are popular and widely utilized in phylogenomic studies

[18,25,93,95,97–99]. Additionally, we utilized a data set based on a set of genes from an earlier

phylogenomic study [18] to facilitate direct comparisons with prior findings; this approach

also provides a unique opportunity to assess the impact of taxon sampling density (Fig 2).

(i) BUSCO data matrix. BUSCO aims to identify putatively orthologous genes using a

predetermined set of profile hidden Markov model sequence alignments (pHMMs) derived

from single-copy orthologous proteins from the OrthoDB database [95,100]. BUSCO genes

have been used as phylogenomic markers in diverse lineages [25,95,101]. Therefore, a data

matrix was constructed using complete, single-copy sequences identified with the BUSCO

algorithm as described above, resulting in 255 single-copy orthologs.

(ii) OrthoFinder data matrix. The OrthoFinder software conducts BLAST all-vs-all

searches across proteomes to infer groups of putatively orthologous genes [102]. Orthologous

groups were initially constructed using the genomic data from 52 taxa—49 Opisthokonta spe-

cies and 3 outgroup taxa (2 amoebozoans and 1 apusomonadid). Each major Opisthokonta

lineage was represented by 1 to 3 taxa with the best assembly quality (S14 Table). OrthoFinder

v2.5.4 [102] was used to identify putatively orthologous sequences shared among taxa using

default parameters (inflation parameter 1.5). To identify additional phylogenomic makers,

species-specific inparalogs—genes that have undergone duplication events along terminal taxa

—were pruned from groups of orthologous genes [103,104]. To do so, orthogroups with

greater than or equal to 80% taxon occupancy (N = 42) were aligned with MAFFT v7.505

[105] using the auto parameter and maxiterate set to 1,000. Ambiguously aligned sites were

removed using trimAl v1.415 [106] with the “gappyout” option following benchmarking stud-

ies [107,108]. Approximate maximum likelihood (ML) phylogenies were inferred from the

trimmed alignments using FastTree v2.2.11 with the slow and gamma arguments [109]. Spe-

cies-specific inparalogs were trimmed using PhyloPyPruner v0.9.5 (https://pypi.org/project/

phylopypruner) with the following arguments: “—min-len 50—trim-lb 7—min-support 0.75

—min-taxa 35—trim-freq-paralogs 5—prune LS”, resulting in 635 single-copy orthologs. A

profile HMM was made for each single-copy ortholog using hmmbuild in HMMER v3.2.1

[110]. The resulting HMMs and orthofisher v1.0.3 [111] were used to identify single-copy

orthologs in the 348 proteomes using a fractional bitscore threshold of 0.95.

(iii) Tikhonenkov_2020 data matrix. To enhance our analysis, we constructed an addi-

tional data matrix using 201 previously identified Opisthokonta orthologs [18]. The study of

Tikhonenkov and colleagues [18] focused extensively on the phylogenetic relationships among

unicellular holozoans, which are of particular interest in this study. They utilized OrthoFinder

for ortholog clustering and subsequently selected the resulting orthologs through a manual

curation process, but with a different taxon sampling strategy (55 taxa), providing a valuable

opportunity to assess the effects of taxonomic sampling on this segment of the phylogenetic

tree. Following this, HMMs were constructed from the multiple sequence alignments using

HMMER. Orthofisher was subsequently utilized to pinpoint single-copy orthologs in each

proteome.

Supermatrix construction

Single-copy orthologs from each data set were treated using the same procedure adapted from

the PhyloFisher pipeline [112] (Fig 2). Specifically, quality filtering for unaligned single-copy
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ortholog sequences was done using PREQUAL v1.02 [113] with a 0.95 posterior probability fil-

tering threshold. Filtered sequences were then aligned with MAFFT v7.505 [105] using the

argument globalpair, maxiterate set to 1,000, and unalignlevel set to 0.6. Alignments were then

processed with Divvier v1.01 [114] using the “divvygap” option and requiring a minimum of 4

characters per column for output. Multiple sequence alignments with lengths less than half of

the total alignment length were removed. Highly divergent and gappy sites (>80% gaps) were

then trimmed using BMGE v.1.12.2 with default settings [115]. Multiple sequence alignments

shorter than 100 bp or with less than 70% taxon representation were removed. Remaining mul-

tiple sequence alignments were concatenated using PhyKIT v1.11.10 [92]. The final BUSCO,

OrthoFinder, and Tikhonenkov_2020 data matrices contained 228, 440, and 201 genes, respec-

tively, and are represented as BUSCO#1, OrthoFinder#1, and Tikhonenkov_2020#1 (Fig 2 and

S2 Table). The overlap between the 3 data matrices was identified using an all-versus-all com-

parison using DIAMOND [116] with default parameters. Functional categories of each ortholog

set in 3 data matrices were annotated using eggNOG v5.0 [117] and BLASTP searches.

Phylogenomic analysis

To infer the Opisthokonta phylogeny and evaluate the impact of different models on the tree

topology, we performed phylogenetic analyses using both site-homogeneous and site-hetero-

geneous evolutionary models (Fig 2). The site-heterogeneous models were specifically utilized

to accommodate varying evolutionary rates across sites, aiming to minimize the impact of

LBA. The best-fitting substitution model (LG) was determined using ModelFinder [118] with

the option msub set to nuclear. We first inferred phylogenetic trees using the computationally

efficient site-homogeneous model LG+I+G4 (hereafter referred to as LG). For site-heteroge-

neous models, the large size of our data matrices is intractable for the C models [119] and the

CAT model [120] implemented in IQ-TREE and PhyloBayes, respectively. However, approxi-

mations thereof offer similar benefits and require fewer, but still substantial, resources. Thus,

we employed the PMSF (posterior mean site frequency) approximation for these 2 models,

which requires a guide tree (inferred using the site-homogenous mode), site-specific stationary

distributions, and amino acid exchangeabilities. Approximate site-specific stationary distribu-

tions and amino acid exchangeabilities were estimated using the Bayesian GTR+CAT-PMSF

model [120,121] (referred to as GTR+CAT) with 1,100 generations and a burn-in of 100 using

PhyloBayes-MPI [122] following a previous study [123]. Results were reformatted using pub-

licly available scripts (https://github.com/drenal/cat-pmsf-paper) to be compatible with

IQ-TREE 2. Tree inference was then performed in IQ-TREE 2 using the LG+C60+F+G4

model under the PMSF approximation (referred to as LG+C60) [119,124]. All analyses were

conducted using unpartitioned models, where the entire data matrix was treated as a single

unit without subdividing into separate partitions.

For each data set, branch support was evaluated using ultrafast bootstrap (UFB) replicates.

Using 1,000 UFB replicates [125], branch support was binned into 3 categories: strongly sup-

ported (above 95), moderately supported (between 90 and 95), and weakly supported (below

90) following a previous study [126]. We constructed single-gene trees for each gene in every

data set employing the “-m MFP -msub nuclear” option in IQ-TREE 2. The discordance

between the gene trees and the corresponding species tree was quantified using the Robinson–

Foulds (RF) distance.

Molecular dating

To infer the timing of Opisthokonta divergences, we used the Bayesian method MCMCTree in

the paml4.9e package [127]. MCMCTree analyses were run on the OrthoFinder#1 data matrix
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using approximate likelihood calculations with uncorrelated (clock = 2) relaxed clock models

and the topology inferred using the LG+C60 model. We used 10 node calibrations based on

well-established fossil evidence—7 from Metazoa and 3 from fungi [82,128–132] (S6 Table).

To investigate the potential impact of varying root age constraints, 2 alternative ages were

established for the root: 1.5 billion years ago and 1.9 billion years ago. For computational trac-

tability, MCMCTree were run on 10 sub-matrices, each consisting of a randomly chosen sub-

set of 100 genes. The MCMC chain was first run for 100,000 iterations as burn-in, then

sampled every 500 iterations until a total of 3,000 samples was collected. Lastly, the divergence

time estimate for each internal branch was calculated as the average across the timetrees pro-

duced by the 10 runs. To analyze historical rates of species accumulation, we utilized the

resulting timetree to construct an LTT plot with the APE R package [133].

Systematically evaluating analytical errors

Phylogenetic inference of deep divergences, such as those concerning major Opisthokonta lin-

eages, are susceptible to many sources of error that may lead to erroneous reconstructions

[54,94,134–136]. By prioritizing a subset of genes deemed more dependable, it becomes possi-

ble to evaluate contentious branches and disentangle the effects of confounding variables

[21,27,33,137] such as missing data and saturation. Specifically, a series of submatrices were

generated using an information theory based framework. Subsetting strategies featured sub-

sampling taxa, sites, or genes based on multiple dimensions of information content, such as

rogue taxa, long-branch scores (LB scores), rates of sequence evolution, composition heteroge-

neity (measured by relative composition frequency variability or RCFV) [138,139], missing

data, and phylogenetic usefulness (Fig 2). We also tested the effect of taxon sampling on the

resolution of unicellular Holozoa using a taxonomy-informed subsampling strategy (Fig 2).

The details of data matrices generated in the analyses can be found in S2 Table. To remove

potential confounding effects, all the subsetting was conducted on the rogue taxon pruned

data matrices (denoted by the suffix “#2”, see below). This process was carried out in parallel,

not progressively.

(i) Rogue taxa—Data matrices #2. A taxon is deemed rogue if it exhibits considerable

variability in its placement across bootstrap trees. Removing them allows for the merging of

bipartitions that were distinct prior to their exclusion, resulting in a better resolved consensus

tree [140]. Rogue taxa were identified in the 3 full data matrices (denoted by the suffix “#1”)

using a graph-based algorithm RogueNaRoK [140], revealing Tunicaraptor unikontum is a

putatively rogue taxon in the OrthoFinder#1 data matrix, but not the other 2 data matrices.

This result corroborates previous reports that the placement of T. unikontum is unstable and

its inclusion has a substantial confounding effect on the resolution of early holozoan phylog-

eny (S1 Data) [18]. Hence, T. unikontum was pruned from each data matrix (S2 Table), we

then performed the same phylogenetic analyses as described above on the resulting data

matrices.

(ii) Long-branch score—Data matrices #3. Removing taxa that exhibit high evolutionary

rates, or “long branches,” could help address issues related to heterotachy in phylogenetic anal-

yses [141]. LB scores, a metric that can be used to identify taxa that might cause LBA artifact

[142], was calculated for each taxon using PhyKIT [92] following [142]. Lower LB scores are

thought to be desirable because they are indicative of taxa or trees that likely do not have issues

with LBA. To rigorously identify long-branched taxa, we selected the top 10% of taxa with the

highest long-branch scores from each of 3 data sets. We then cross-referenced these selections

to identify taxa that consistently appeared in the top 10% across all data sets, thereby defining
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our long-branched taxa. This analysis identified 27 “long-branched” taxa (S15 Table), which

were pruned from the #2 data matrices (Fig 2).

(iii) Taxon sampling—Data matrices #4–7. To assess the impact of taxon sampling on

phylogenetic topologies, 4 submatrices with different taxon sampling densities (while main-

taining a high diversity) were generated. To be comparable with the taxon number in previ-

ous studies (Torruella and colleagues [19], 83 taxa; Grau-Bove and colleagues [20], 57 taxa;

López-Escardó and colleagues [26], 79 taxa; Hehenberger and colleagues [11], 38 taxa;

Tikhonenkov and colleagues [18], 75 taxa), 60 taxa representing 25 major lineages in

Opisthokonta were selected while preserving the most comprehensive representation of

Filasterea, Ichthyosporea, and Pluriformea (S16 Table). The impact of increased taxon sam-

pling was evaluated by randomly selecting additional, nonredundant species from the

remaining taxa to create 3 additional data sets of 120, 180, and 240 taxa resulting in 12 new

data matrices (Fig 2 and S16 Table), this approach guaranteed each species adds unique

value to the phylogenetic analysis. Step size was set at 60 to ensure a uniform and methodi-

cal increase from the initial data set.

(iv) Fast evolving sites—Data matrices #8–10. Fast-evolving sites may suffer from satu-

ration by multiple substitutions and cause LBA artifacts [11]. For each data matrix, 3,000,

6,000, or 9,000 sites with the highest rates of sequence evolution were removed using the fas-

t_site_remover.py script from PhyloFisher [112], which uses DistEst [143] to estimate evolu-

tionary rates. Briefly, site-wise evolutionary rates are estimated by assigning sites to various

rate categories based on their evolutionary rates, calculated using a discrete gamma distribu-

tion and optimized through maximum-likelihood estimation. This method resulted in a total

of 9 new data matrices (Fig 2).

(v) Phylogenetic usefulness—Data matrices #11–13. Phylogenetic usefulness predicts the

performance of genes in phylogenetic analyses based on a principal component axis derived

from 7 gene properties: Robinson–Foulds distance; average bootstrap support; saturation; com-

positional heterogeneity; root to tip variance; average patristic distance; and proportion of vari-

able sites, offering a distinct advantage by not depending on a single gene property or the direct

assessment of variables measured [137]. Gene properties related to potential phylogenetic use-

fulness and bias were calculated using the genesortR package [137]. The 3 data matrices were

then subsampled using the best-ranked 90, 80, and 70 percent of genes (Fig 2). These particular

thresholds were selected after finding that using less than 50% of the genes led to poorly resolved

trees. The goal was to maintain the maximum number of loci while incrementally removing

them to examine the impact on the phylogenetic trees.

(vi) Compositional heterogeneity—Data matrices #14–16. Compositional heterogeneity

has been implicated as an important source of systematic error in Opisthokonta phylogeny

[14,18,86,89], which could lead to compositional bias and LBA artifacts, potentially skewing

phylogenetic results. One way to assess it is using the RCFV score measured from the frequen-

cies of the amino acid in each gene alignment. Reduce compositional heterogeneity in the data

matrix could help ameliorate the compositional bias. The 90, 80, and 70 percent of genes with

the lowest RCFV scores, indicative of being least prone to compositional biases, were subsam-

pled using genesortR [137] (Fig 2).

(vii) Missing data—Data matrices #17–19. Missing data are common in data matrices

and can result from alignment gaps or the absence of information for certain genes in some

species [144]. The effect of such missing data on phylogenetic inference is a subject of ongoing

debate. In this study, we assess the impact of missing data by subsampling genes that retain

90%, 80%, and 70% completeness—those with the least amount of missing information—

using the genesortR [137] (Fig 2).
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Phylogenetic inference of subsampled data matrices #3–19

We performed ML phylogenetic analyses with IQ-TREE 2 [145] on the subsampled matrices

using a single LG model, assessing topological support with 1,000 UFBs [125]. Phylogenetic

inference of data matrices #4–7 were further examined using the GTR+CAT model as described

above. Support for the 3 alternative topologies (Pluriformea-sister, Teretosporea-sister, and

Ichthyosporea-sister hypotheses, Fig 4A) was also examined by examining the frequency of each

topology among the 1,000 UFB replicates using IQ-TREE 2. Specifically, cladogram of Plurifor-

mea-sister: (Pluriformea, (Ichthyosporea, Filozoa)), Teretosporea-sister: ((Pluriformea, Ichthyos-

porea), Filozoa), and Ichthyosporea-sister: (Ichthyosporea, (Pluriformea, Filozoa)) were input to

IQ-TREE 2 via the sup option, with the remaining taxa constrained as polytomies.

Quantifying single-gene phylogenetic signal

Single-gene phylogenetic signal was quantified using 2 approaches: likelihood scores and con-

cordance factors. gCFs and sCFs—the percentage of gene trees that support a node based on

descendant taxa and the percentage of informative sites that support that node via parsimony,

respectively [146]—were calculated using IQ-TREE 2. To calculate gCFs, individual gene trees

were first inferred using IQ-TREE 2 using the best fitting substitution model selected by Mod-

elFinder with the msub parameter set to nuclear, gCFs were then estimated by comparing indi-

vidual gene trees to the concatenated tree inferred with LG model; sCFs were calculated using

100 random quartets.

To examine phylogenetic signals supporting 2 conflicting hypotheses recovered in this

study (Pluriformea-sister and Teretosporea-sister, see Fig 4A), we examined the gene likeli-

hood scores for each data matrix (#2). Site-wise support was calculated for both hypotheses

using IQ-TREE 2 with the g option and the LG model. The number of genes supporting each

hypothesis was then calculated from IQ-TREE 2 using the wsl option by comparing genewise

log-likelihood scores (ΔGLS) [147]. Genes with an absolute value of log-likelihood difference

greater than 2 (|ΔGLS| > 2) were considered to have strong phylogenetic signal; those with a

difference less than 2 (|ΔGLS| < 2) were considered to have weak signals, following Shen and

colleagues [147].

To examine the influence of single genes with high ΔGLS values, each of the data matrices

#2 were subsampled by pruning the 1, 5, 10, and 50 genes with the highest absolute ΔGLS val-

ues following Shen and colleagues [147], resulting in 12 new data matrices. A species tree was

then estimated for each matrix using IQ-TREE 2 with the LG model and 1,000 ultrafast boot-

strapping replicates [125].

Supporting information

S1 Fig. Lineage-through-time (LTT) plot for major component groups in Opisthokonta

tree of life. The time tree generated using mcmctree was used for lineage-through-time plot

using the ltt.plot function in the APE R package [133]. We defined 12 groups: Unicellular

holozoans, includes Choanoflagellatea, Filasterea, Ichthyosporea, and Pluriformea; Ctenophora;

Porifera; Placozoa; Cnidaria; Deuterostomia: comprises Chordata, Echinodermata, Hemichor-

data and Xenacoelomorpha; Ecdysozoa: consists of Arthropoda and Tardigrada; Lophotrocho-

zoa: includes Annelida, Mollusca, Nemertea, Bryozoa, and Branchiopoda; Dikarya: include

Ascomycota and Basidiomycota; Zygomycetous fungi: This group includes Mucoromycota and

Zoopagomycota and Olpidiomycota; Zoosporic fungi: Comprises Blastocladiomycota and Chy-

tridiomycota; “others” include nucleariids and Cryptomycota; The script used to generate this

figure is available at https://doi.org/10.6084/m9.figshare.23301824.v1.

(TIFF)
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S2 Fig. Comparison of the 3 data matrices constructed in this study. (A) Venn diagram of

shared orthologs for the 3 data matrices (details of genes shared see S6 and S7 Tables). The

venn diagram was generated using jvenn [148]. (B) Single copy orthologs with functional

information, the functional category “S: unknown function” was ignored as it does not include

functional information. The functional categories of every gene were determined by averaging

the annotations of the corresponding cluster members. The data and code underlying this fig-

ure can be found in https://doi.org/10.6084/m9.figshare.23301824.v1.

(TIFF)

S3 Fig. Hierarchical clustering dendrogram. The data and code underlying this figure can be

found in https://doi.org/10.6084/m9.figshare.23301824.v1.
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