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INTRODUCTION: It is often said that the jack-of-
all-trades is the master of none. Niche breadth
varies widely across the tree of life, from nar-
row in specialists to broad in generalists. One
ecological paradigm explains this variation by
invoking trade-offs between niche breadth and
performance efficiency. Generalists perform
moderately well inmany niches, whereas each
specialist has an advantage in its own niche. A
second paradigm explains niche breadth var-

iation through extrinsic and intrinsic factors.
Extrinsic factors are ecological variables that
include nutrient availability, temperature, or-
ganism interactions, and heterogeneity. Intrin-
sic factors are encoded by organisms’ genomes
and affect how they access and process nu-
trients and tolerate stresses.

RATIONALE: To study niche breadthmacroevo-
lution, we deployed an ancient model sub-

phylum uniquely poised for studies at ge-
nomic, metabolic, and ecological scales. The
yeast subphylum Saccharomycotina of king-
dom Fungi is best known for themodel baker’s
yeast Saccharomyces cerevisiae and the major
human pathogen Candida albicans, but more
than 1000 species have radiated during more
than 400 million years into diverse ecological
niches. Yeasts harbor gene sequence divergence
comparable to that of animals and plants and
are found in environments ranging from bats
to cadaver tanks and from cheese caves to bio-
fuel factories.

RESULTS: We generated a vast dataset of ge-
nome sequences of 1154 yeasts fromnearly every
known species, quantitative metabolic growth
data in 24 conditions, and a hierarchical eco-
logical ontology of isolation environments. Using
evolutionary, machine learning, and network
analyses, we found that yeast metabolic niche
breadth is largely shaped by intrinsic factors.
Generalist genomes encoded more genes and
metabolic reactions, and our machine learn-
ing algorithm distinguished generalists from
specialists using genome content with high ac-
curacy. Themost predictive features in our data-
set pointed to specific genes in four pathways or
complexes that are directly involved in carbon
and energy metabolism, often by enhancing
metabolic flexibility and robustness. Through
ancestral trait reconstruction and coevolution
analyses, we further demonstrated that gen-
eralists were more likely to have retained or
gained traits, whereas specialists repeatedly
arose through pervasive gene and trait loss.
We did not find evidence for trade-offs be-
tween carbon niche breadth and growth rates;
compared with specialists, carbon generalists
grew faster in laboratory conditions andonmore
nitrogen sources. These results suggest that in-
trinsic genetic factors are a major driver of mi-
crobial diversity and niche breadth variation.

CONCLUSION:We generated a genomic, meta-
bolic, and ecological dataset to showhowmeta-
bolic diversity and niche breadth are encoded in
yeast genomes andhow these traits have evolved
over deep time. Coupling a comprehensive data-
set with a robust analytical framework paints a
rich portrait of a diverse eukaryotic subphylum
with immense impacts on human health, agri-
culture, and biotechnology that provides a road-
map connecting DNA to diversity.▪
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A comprehensive initiative capturing genomic, metabolic, and ecological diversity among 1154 yeasts
of the fungal subphylum Saccharomycotina. We built a robust phylogeny and generated extensive
genomic, phenotypic, and ecological data. We identified carbon niche breadth variation and used machine
leaning to identify several intrinsic factors that contribute to carbon generalism.
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Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very
broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs
between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and
intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all
known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species),
grown in 24 different environmental conditions, to examine niche breadth evolution. We found that
large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences
in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These
comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.

T
he ecological niche is a fundamental con-
cept in ecology and evolutionary biology
that explains the diversity and resource
use of organisms through space and time.
Species with broad niche breadths are

defined as generalists, whereas those with
narrow ones are specialists. There are many
biotic and abiotic dimensions of the niche that
can and do vary among organisms (1–3), which
begs the question: What factors contribute to
niche breadth variation?
Two broad paradigms have been offered

as answers across a variety of taxa. The first
paradigm postulates that both niche general-
ism and specialism are governed by trade-offs
between performance efficiency and niche

breadth (4–9). In the context of metabolic
niche breadth, selection for increased efficiency
in using a specific food source will be coupled
to selection against using other food sources
and vice versa. Over the long term, such se-
lection produces generalists that use more sub-
strates less efficiently and specialists that use
fewer substrates more efficiently. Consistent
with these expectations, selection for special-
ization in using a single food source in repli-
cate populations of the bacterium Escherichia
coli was coupled to a reduction in their ability
to catabolize other food sources (10).
The second paradigm postulates that gen-

eralist and specialist phenotypes are the out-
come of the joint influence of diverse extrinsic

(environmental) and intrinsic (genomic) factors
(11–16). Generalists and specialists are shaped
by the environments in which they occur and
the evolvability of their metabolic pathways
rather than by trade-offs. These specific con-
ditions will result in a unifying set of extrinsic
and intrinsic features that govern the evolu-
tion of generalist and specialist phenotypes.
Extrinsic factors are the environments in

which species live. They can vary with respect
to numerous abiotic and biotic factors, such as
spatial and temporal heterogeneity, tempera-
ture, and carbon and nitrogen availability. For
example, carbon sources have been shown to
be limited within endothermic hosts (17, 18);
temperatures and soil moisture can vary be-
tween woodland and meadow habitats as a
result of canopy cover (19); and the availability
of nitrogen sources (20, 21), carbon sources
(22–24), and growth-inhibiting specialized
metabolites can differ because of the activities
of other organisms in the environment (25, 26).
Variation in one or more of these extrinsic
factors could exert selective pressure on traits,
resulting in generalism and specialism (27).
Intrinsic factors that may influence niche

breadth include the evolution of promiscuous
enzymes responsible for the utilization of multi-
ple resources (17, 28–31), as well as overlap-
ping biochemical, developmental, and genetic
pathways (15, 16). For example, yeast MAL
and IMA genes are promiscuous enzymes as-
sociated with the utilization of multiple carbon
sources in yeasts; that is, they can increase
niche breadth by enabling broader consump-
tion (17, 28). Conversely, gene loss due to drift
or relaxed selection, which is likely in envi-
ronments with lower nutrient diversity, could
lead to narrower niche breadths (32). The
diversity of traits and the genes that control
them leads to the hypothesis that niche breadth
variation may reflect the interplay between
evolutionary and ecological forces acting on
intrinsic factors.
The subphylum Saccharomycotina (phylum

Ascomycota, kingdomFungi)—which includes
the baker’s yeast Saccharomyces cerevisiae,
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the opportunistic pathogen Candida albicans,
and the oleochemical cell factory Yarrowia
lipolytica—exhibits extensive ecological, ge-
nomic, and metabolic diversity. Thus, it is a
superb system for testing paradigms for the
evolution of metabolic niche breadth (Fig. 1).
The genomes of Saccharomycotina species, com-
monly referred to as yeasts, are highly diverse;
levels of gene sequence divergence across yeasts
are comparable to levels observed across plants
and animals, and the subphylum also harbors
considerable variation in gene content, includ-
ing metabolic genes (28). Additionally, exten-

sive experimental work in model yeasts, such
as S. cerevisiae (33) and C. albicans (34), pro-
vides validated functional genetic information.
Yeast growth profiles have been character-

ized across many carbon and nitrogen sources
and environmental conditions (e.g., temper-
ature), and they are highly variable across
species (17, 28, 35). This phenotypic diversity
is coupled to their ecological diversity. Yeasts
are found in almost every biome on a wide
array of substrates, and the isolation envi-
ronments (defined as the specific environ-
mental location where a strain was originally

isolated) of these yeasts are associated with
specific phenotypic traits. For example, both
glucose and sucrose fermentation are posi-
tively associatedwith living on fruits, fermented
substrates, and juices (17), particularly among
multiple yeast genera that have been linked to
wine production and food spoilage (17, 36, 37).
Opportunistic fungal pathogens have also
evolved metabolic strategies that allow them
to colonize the complex ecosystem of the
human body, where carbon availability var-
ies spatially and temporally (17, 38, 39). This
treasure trove of genomic, metabolic, and
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Fig. 1. Yeasts are morphologically, ecologically, and metabolically diverse.
(A) Images of yeasts from different orders. The color of the box surrounding
the image indicates the species’ order. The color of the circle in the bottom right-
hand corner of the image represents the isolation environment for the strain
of the species sequenced and phenotyped during this study. Yeast colonies
are morphologically diverse; they can vary in shape, color, size, dullness, etc.
(B) Yeasts have been isolated from every biome and continent. Strains studied

were found on plants, in animals, in soil, and in many other environments. Strain-
level isolation data were placed into an ecological ontology to allow for the
identification of yeasts that shared higher-level ontological classes. (C) Yeasts
are metabolically diverse. The image represents the KOs present across
Saccharomycotina metabolic networks. Any pathway that is highlighted in purple
is present across a subset of yeasts; the saturation of the purple represents
the proportion of yeasts with the pathway.
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environmental diversity across a subphylum
makes Saccharomycotina an attractive and
highly tractable system for studying niche
breadth evolution.
To gain insight into the factors that contrib-

ute to metabolic niche breadth variation, we
quantified variation in genome content, isola-
tion environment, and carbon and nitrogen
metabolism for 1154 yeast strains, which rep-
resent nearly all known species in the sub-
phylumSaccharomycotina. This dataset enabled
us to evaluate the evidence for the two niche
breadth evolution paradigms (trade-offs ver-
sus underlying intrinsic and extrinsic factors)
across species with broad (generalists) and
narrow (specialists) carbon niche breadths.
Our evolutionary, machine learning, and net-
work analyses uncovered a unifying set of
intrinsic factors among generalists that were
largely absent in specialists and pinpointed
specific genetic differences between generalists
and specialists, including previously uniden-
tified associations between carbon generalism
and specific metabolic pathways. By contrast,
we found limited evidence for trade-offs be-
tween carbon generalism and growth rate.
Through ancestral trait reconstruction and co-
evolution analyses, we further demonstrated
that generalists were more likely to have re-
tained or gained traits, whereas specialists
repeatedly arose through pervasive gene and
trait loss. The genomic, metabolic, evolution-
ary, and ecological data for nearly all known
species of the 400-million-year-old yeast sub-
phylum Saccharomycotina provided in this
work, coupled with the availability of multiple
genetic models in the subphylum, present an
inimitable resource and framework for linking
genomic variation to phenotypic and ecologi-
cal variation.

A genomic, evolutionary, and metabolic
portrait of Saccharomycotina

We sequenced and assembled 953 genomes
in this study and combined them with 140 ge-
nomes previously sequenced by the Y1000+
Project (40) and 61 publicly available genomes
(data S1). Our dataset contained 1154 genomes
from 1051 species, including 1037 taxonomic
type (i.e., ex-type) strains. Multiple strains
were sequenced from 41 species, including a
total of 19 recognized varieties distributed
across nine species (i.e., two to three varieties
per species). Sixty-one of the strains whose ge-
nomes were sequenced could not be assigned
to any of the known species; thus, they are
candidates for novel species. The genomic
dataset spans 96 yeast genera, which is ~90%
of currently described genera (41). Excluded
generawere typically those for which no living
culture was available or those described af-
ter our last round of genome sequencing in
February 2021. Our genome sequencing added
between 1 and 336 species to each order, most

notably expanding the order Serinales (previ-
ously major clade CUG-Ser1), which contains
the human pathogens C. albicans and Candida
auris, from 94 genomes to 430. All genome
assemblies totaled ~15 billion base pairs. The
assemblieshadameanN50 (the sequence length
of the shortest contig at 50% of the total as-
sembly length) of 387.5 kb, which was compara-
ble to our previous smaller-scale dataset of 332
genomes (417.2 kb) (fig. S1A and data S1) (28).
All genomes were annotated to identify puta-
tive coding sequences. On average, 5908 ± 1069
(mean ± SD) protein-coding sequences were
identified per genomewith a range from 3775
(Starmerella lactis-condensi) to 20,704 (Mag-
nusiomycesmagnusii) (fig. S1B) (42). Functional
annotations were conducted using Kyoto En-
cyclopedia of Genes and Genomes (KEGG) and
InterPro. GC content (subphylummean = 41.1 ±
6.61%) ranged from 23.9% (Candida bohioensis)
to 66.8% (Candida pseudocylindracea), and
genome size (subphylummean = 13.2 ± 3.5 Mb)
ranged from7.2Mb (Starmerella lactis-condensi)
to 41.3 Mb (M. magnusii) (fig. S1, C and D, and
data S1). Of the 1154 yeast genomes, 1000 (~87%)
had ≥90% of the 2137 predefined single-copy or-
thologsdefinedbyOrthoDBv10 (dataS1) (43,44).
At least three independent nuclear codon

reassignments are known to have occurred
during the evolution of the subphylum (45).
Given the large number of newly added ge-
nomes, we inferred codon tables and tRNA
genes to confirm the known reassignments and
test for potential new reassignments (data S2).
These results were consistent with the previ-
ously observed codon reassignments. Notably,
genomes of the order Ascoideales had a diver-
sity of tRNAs with CAG anticodons predicted
to decode CUG codons, which is consistent
with previous findings that these yeasts may
stochastically decode CUG as both leucine and
serine (46).
To infer the genome-scale phylogeny of the

Saccharomycotina, we used 1403 orthologous
groups (OGs) from 1154 Saccharomycotina ge-
nomes and 21 outgroups. Nearly all internodes
in both concatenation-based (1136/1153, 99%)
and coalescent-based (1123/1153, 97%) phylog-
enies received strong (≥95%) support (Fig. 2
and figs. S2 and S3). The two phylogenies were
highly congruent, with only 60/1153 (5%) con-
flicting internodes (fig. S3). Moreover, relation-
ships among the 12 recently circumscribed
taxonomic orders (41) (previouslymajor clades)
were congruentwith previous studies (28, 47, 48),
including the placement of the Ascoideales
(previously CUG-Ser2) and Alaninales (previ-
ously CUG-Ala).
To examine the evolution ofmetabolic niche

breadth across Saccharomycotina, we quanti-
fied the growth rates of 853 yeast strains on 18
carbon sources, 6 nitrogen sources, and a no-
carbon control (data S3). We found that yeasts
displayed variation in growth rates across car-

bon (fig. S4A) and nitrogen sources (fig. S4B);
on average, each yeast strain could metabo-
lize eight carbon (Fig. 3A) and two nitrogen
sources (fig. S5). Comparison of growth rates on
different carbon sources revealed that 65.22%
of yeasts (n = 557) grew fastest on glucose,
whereas the remaining 34.78% (n = 297) grew
faster on another carbon source (fig. S6). Man-
nose, an epimer of glucose not typically tested
in yeast growth experiments, was the carbon
source on which yeasts grew fastest, on aver-
age, after glucose (n = 112). We also found that
77 yeasts grew faster on fructose than glucose,
including cases where their maximum growth
rate was on a third carbon source. Several of
these yeasts (n = 7) were in Dipodascales,
which containsmany known fructophilic yeasts
(49). The ability to grow faster on fructose was
independently verified in a second laboratory
on a subset of yeasts (data S4).

A lack of evidence for trade-offs between
carbon niche breadth and growth rates

We statistically classified yeasts into three cat-
egories for both carbon and nitrogen utiliza-
tion niche breadths—specialist, standard, and
generalist (data S3). We found that, for both
carbon and nitrogen metabolism, most yeasts
were classified as standard yeasts (i.e., yeasts
that did not fall into the extremes for carbon
niche breadth) (76.0%, 648/853, and 78.4%,
669/853, respectively) (data S3 and Fig. 3A).
Of the remaining 24.0% (n = 205/853), 53.7%
(n = 110/205) were specialists and 46.3% (n =
95/205) were generalists for carbon sources
(Fig. 3A). The median numbers of carbon
sources used by specialist, standard, and gen-
eralist yeasts were 4, 8, and 12, respectively.
Carbon generalists and specialists were widely
distributed across the subphylum (Fig. 2), and
all orderswithmore than 15 phenotyped strains
(n = 8) featured both generalists and special-
ists. However, the relative proportion of gen-
eralists and specialists within orders varied
greatly. For example, the order Saccharomy-
cetales (n = 82) had 3 generalists and 33 spe-
cialists, whereas the order Serinales (n = 347)
had 53 generalists and 9 specialists. This result
suggests that yeast orders exhibit distinct eco-
evolutionary trajectories.
First, we tested for a trade-off between growth

rate and carbon niche breadth by investigating
whether specialists had a growth rate advan-
tage over other yeasts in some conditions. We
compared all growth rates within each carbon
source by classifying growth into three catego-
ries: slow (growth rate in the lower quartile),
intermediate, and fast (growth rate in the
upper quartile). We found a statistically sig-
nificant interaction between carbon classifica-
tion and growth rate (P < 2.2 × 10−16); specialists
were more often slow growers (38%, 146/381
growth rates) than fast growers (15%, 54/381),
whereas generalists were more often fast
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growers (33%, 403/1222 growth rates) than
slow growers (20%, 238/1222 growth rates)
(Fig. 3B). Moreover, there were fewer special-
ists than generalists in the fast category across

all tested carbon sources (data S5). We also
examined linear phylogenetically corrected
correlations between growth rates and carbon
niche breadth. We found that growth rates on

five carbon sources were positively correlated
with carbon niche breadth when accounting
for phylogeny and multiple-testing correction
(glucose P = 0.0028, mannose P = 0.0056,
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is based on the carbon niche breadth, which is represented by the bar graph on the exterior of the tree, along with nitrogen breadth. All traits illustrated
(isolation environment, carbon growth class, nitrogen breadth, and carbon niche breadth) are widely distributed across the tree; no order has one trait exclusively.
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myo-inositol P = 0.0083, galactose P = 0.0024,
and fructose P = 0.0111; all slopes between
0.001 and 0.002) (table S1 and fig. S7A). No
significant negative correlations were iden-
tified, which would have indicated that spe-
cialists were faster growers.
Second, we repeated these analyses using

only the fastest growth rate for each yeast be-
cause specialists might outperform other

yeasts only in the environment in which they
are specialized. We found that the proportion
of fast-growing specialists was 9% (10/107), a
decrease from the 15% of fast-growing spe-
cialists found when we compared all growth
rates across all substrates, whereas the pro-
portion of fast-growing generalists was 43%
(38/89), an increase from 33% (Fig. 3B). Thus,
the strong interaction between carbon classi-

fication and growth rates persisted when only
the fastest rateswere considered (P=7.8× 10−11).
In this case, carbon niche breadth was sig-
nificantly and positively correlated with growth
rates on glucose (P = 0.0002, slope = 0.002),
sucrose (P = 0.0032, slope = 0.001), and fructose
(P = 0.0062, slope = 0.001) after accounting for
multiple testing and phylogeny (table S1 and
fig. S7B).
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Fig. 3. Carbon specialists and generalists differ in nitrogen breadth,
growth rate, and evolutionary history. (A) Histogram of carbon niche breadth
across yeasts (n = 853). The colors of the bars represent the ranges for the
different carbon classifications. Metabolic classifications were determined by
permuting the binary carbon growth matrix (n = 1000 permutations). To
determine the metabolic strategy of a yeast, we calculated the observed and
expected (permuted) breadth for each yeast and calculated the binomial
confidence intervals to determine significant differences in breadth. Generalists
had a significantly larger carbon niche breadth than expected by chance, and
specialists had a significantly smaller carbon niche breadth. If a yeast was
not classified as either a generalist or a specialist, it was classified as standard.
(B) The growth rates for each yeast on each of the 18 carbon sources were
categorized as slow (bottom 25%), intermediate (median 50%), or fast (top
25%) using either all the rates per yeast (white outline) or only the highest
rate per yeast (black outline). Carbon generalists had the highest proportion of
fast growth rates (33% of all rates, 43% of fastest rates), whereas specialists
had the smallest proportion (15% of all rates, 9% of fastest rates) The inverse

was also true, with carbon generalists having the smallest proportion of slow
growth rates (19% of all rates, 14% of fastest rates) and carbon specialists
having the highest proportion of slow growth rates (38% of all rates, 42% of
fastest rates). (C) Stacked bar graph of carbon metabolic strategies within each
nitrogen metabolic strategy. (D) Carbon generalists shared many of the same
growth traits: 10 of 18 growth traits were found in more than 75% of generalists.
Many of the carbon sources had different evolutionary trends in a generalist
background as compared with across the whole tree. Three different evolutionary
models are shown: trait gain (black), trait loss (white), and equal rates of trait
gain and loss (gray). No box indicates that the trait was not coevolving with
background or across the tree. More than one evolutionary model is shown in
cases where the reverse jump model spent 75% or less of the time on a single
model. For example, the model testing correlated evolution between growth on
D-glucosamine and generalist carbon classification reported a model string with
a greater rate of gain in 55% of the run and a model string with equal rates
of gain and loss in 29% of the run; therefore, we reported both the trait gain and
equal gain-loss model in the generalist analysis.
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A third analysis using the fastest growth
rate for each specialist compared with all
other growth rates yielded similar results (table
S1 and fig. S7C). In this analysis, the growth
rate for a carbon source included only special-
ists whose growth rate was highest on that car-
bon source and any growth rates for standard
and generalist yeasts. Moreover, specialists
were not the fastest-growing yeast in any of
the carbon sources tested, including glucose.
Our findings suggest that generalists grow faster
on more substrates compared with special-
ists, including under conditions preferred by
specialists.
We next tested whether there was a trade-

off between carbon and nitrogen breadth. We
found significantly fewer carbon generalists
that were also nitrogen specialists (n = 1) and
carbon specialists that were also nitrogen gen-
eralists (n = 2) than expected by chance (P =
3.26 × 10−14) (Fig. 3C). Moreover, trait-trait co-
evolutionary analysis found that carbon gen-
eralists tended to also be nitrogen generalists
(Bayes factor > 2). Furthermore, our analyses
of coevolution between carbon and nitrogen
generalism showed that nitrogen generalism
arises almost exclusively in a genetic back-
ground of carbon generalism (i.e., in carbon
generalism lineages; table S2). In other words,
carbon generalism mainly arises before and
may facilitate nitrogen generalism. Addition-
ally, phylogenetic regression analysis showed
a strong positive correlation between carbon
and nitrogen niche breadth (reported P =
0.000, slope of correlation = 0.92; table S2).
These results suggest that there is an evo-
lutionarily conserved functional connection
between carbon and nitrogen metabolism in
yeasts. Consistent with our finding, it is well
known that certain amino acids can serve as
both a carbon and nitrogen source and, as
such, are dually regulated by both carbon and
nitrogen signaling systems (50, 51). Addition-
ally,manymetabolic pathways are known to be
controlled by signals from other compounds or
nutrients. In bacteria, nitrogen, sulfur, phos-
phorus, and iron metabolism can even be con-
trolled by carbon metabolism (50, 52).
Our previous analysis of 332 yeasts identi-

fied a pervasive pattern of trait loss (28), which
suggests that generalists have either retained
carbon-acquisition traits over long evolution-
ary timescales or gained traits, unlike their
nongeneralist relatives. To test these hypothe-
ses, we compared the relative rates of carbon
trait gain or loss, either across all yeasts or
specifically within generalist lineages, while
taking phylogeny into account (Fig. 3D and
table S3). For the eight carbon traits found in
less than 75% of generalists, we identified a
strong trend of trait loss across the entire
phylogeny but some evidence of trait gain in
the generalist background. Therefore, carbon
generalists appear to have both gained and

retained carbon traits that were otherwise lost
broadly across the rest of the subphylum.

Intrinsic factors shape carbon niche breadth
variation in yeasts

Given the extreme carbon niche breadths of
generalists and specialists, we next tested
whether these two groups have independent
factors favoring generalist and specialist pheno-
types. Extrinsic factors, such as carbon availa-
bility in an isolation environment, could shape
variation in metabolic niche breadth. Similar
environments, which are likely to share ex-
trinsic factors, may favor the evolution of gen-
eralists or specialists. To explore the possibility
that some environments contain extrinsic fac-
tors that shape carbon niche breadth, we iden-
tified the precise isolation environment for
each possible yeast strain (1088 total).We then
grouped strains by similar environments using
a formal hierarchical ontology of isolation en-
vironments. This ontology contained 1597 classes
(specific environments) (fig. S8 and data S6).
Environment classifications at the highest level
of our ontology generally contained similar
numbers of generalists and specialists: Arthrop-
oda (24 generalists and 16 specialists), Chor-
data (7 and 8), plants (25 and 31), and food or
drink (5 and 16). Furthermore, generalists and
specialists shared environments. For example,
Hyphopichia homilentoma (generalist) and
Wickerhamomyces sydowiorum (specialist)
were both isolated from tunnels of the wood-
boring beetle Sinoxylon ruficorne in the red
bushwillow Combretum apiculatus. Given the
limited number of generalists and specialists
within an environment and the fact that we
only had a single environment per strain, we
were unable to rigorously test for extrinsic
factors that favor generalists or specialists.
We anticipate that incorporation of improved
characterizations of yeast habitats and the ad-
dition of isolation environment data into our
formal ontology will enable future investiga-
tions of the environmental factors shaping
carbon niche breadth evolution.
We next hypothesized that the genomes

of generalists may contain a larger number
of metabolic genes, which are intrinsic factors,
compared with those of specialists. We found
that both the total number of genes and the
number of KEGG ortholog groups (KOs) were
both positively and significantly associated
with carbon niche breadth (Fig. 4A and fig.
S10, A and B). Notably, we found that, for
every additional carbon source a yeast could
metabolize, its genome contained, on average,
an additional 36 genes and 2 KOs.
Metabolic networks, including the carbon

metabolism network, are more complex than
just the total number of genes because they are
highly interconnected owing to shared enzymes
and pathways. To examine whether metabolic
network structure varied between generalists

and specialists, we used KOs to build meta-
bolic networks for all yeasts and tested for a
correlation between carbon niche breadth and
six common network properties that reflect
biological complexity (Fig. 4B; fig. S10, C to F;
and data S7) (53, 54). Relative to carbon spe-
cialists, carbon generalists had a higher edge
count, or more connections between nodes
of the network (Fig. 4B) (55). Both carbon
generalists and specialists had disassorta-
tive networks, or networks with high levels
of connection between nodes with dissimilar
properties—a property of all biological net-
works (56). However, relative to specialists, the
generalist networks were less disassortative,
or hadmore highly interconnected nodes (Fig.
4B). There were no significant correlations be-
tween carbon niche breadth and the other
network properties (fig. S10, C to F). Despite
the extreme difference in carbon metabolism
capabilities, carbon generalists and specialists
had only slight differences in the size and shape
of their global KEGG metabolic networks.
These results suggest that generalist and spe-
cialist networks are overall similar in size and
shape but differ in how they are wired.
We next investigated differences in the com-

position of generalist and specialist networks.
Generalists and specialists largely showed
similar compositions across KOs, but a small
set of KOs was depleted (presence < 20%) in
specialists and enriched (presence > 85%) in
generalists (table S4). Generalist-enriched KOs
were related to nitrogen, fructose, mannose,
and galactose metabolisms. Enrichment of
these terms suggests that differences in gene
content contribute to the overall carbonmetab-
olism trait differences observed between gen-
eralists and specialists.

Unifying genetic features of carbon niche
breadth generalists

To gain further insight into the genes and
pathways contributing to the observed carbon
niche breadth variation across the yeast sub-
phylum, we used machine learning. Specifi-
cally, we trained a supervised random forest
classifier to use KO presence and absence as
predictive features for carbon niche breadth
classification. Niche breadth classification of
generalists and specialists was used instead of
the actual number of carbon sources because
there were insufficient numbers of yeasts for
some values to adequately train our model
(e.g., there was only one yeast that grew on
17/18 carbon sources, but there were 64 yeasts
that grew on five carbon sources). The result-
ing classifier was both highly sensitive and
specific, correctly classifying 88% of special-
ists and 89% of generalists [area under the
curve (AUC) = 0.93] (Fig. 4C). The high ac-
curacy suggests that generalist and specialist
KEGG networks differ in ways that were not
detected in the KO enrichment analysis.
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Examination of the features on which the
classifier relied using dropout analysis iden-
tified 2050 KOs that significantly contributed
to classification accuracy. Approximately 5000
individual yeast KOs were used to train the al-
gorithm, which suggests that many KOs con-
tributed some information to niche breadth
classification. We further examined the top
four features because the fifth feature had only

half the relative importance score of each of
the top four. Two of the top four features had
direct links to the catabolism of specific carbon
substrates, demonstrating the power and preci-
sionofouralgorithm.TheKOformanB (K01192),
which encodes a b-mannosidase, had the second-
highest relative importance (relative importance,
0.048). This KOwas identified in 7% of special-
ists (8/111) and 80% of generalists (76/95).

b-mannosidases are known to have a role in
microbial utilization of N-glycans as a carbon
source (57). Almost all the carbon generalists
(93/95) can use mannose, which leads to the
hypothesis that generalists likely use the man-
nosemoieties present inN-glycans as a carbon
and energy source.
The KO with the third-highest importance

was K17738 (relative importance, 0.043),
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BFig. 4. Generalist and specialist metabolism differs in
expected and unexpected ways. (A) Total annotated
coding sequences (top) and total number of annotated KOs
(bottom) were both positively and significantly correlated
with carbon niche breadth using a phylogenetic generalized
least squares (PGLS) analysis. One outlier with a predicted
number of coding sequences is not visualized but was
included in the analysis (M. magnusii; number of protein-
coding genes = 20,704; carbon niche breadth = 9). (B) Two
KEGG network statistics were significantly and positively
correlated with carbon niche breadth when taking into
account phylogenetic relatedness (PGLS). KEGG edge count
(top) and KEGG assortativity (bottom) were both elevated
in carbon generalists. (C) Yeasts were classified into generalists
and specialists using a machine learning algorithm trained
on the KOs. The correct classification occurred in 88% of
specialists and 89% of generalists. The receiver operating
characteristic (ROC) analysis suggests that both the sensitivity
and specificity of our model are excellent (AUC = 0.93).
(D) Multiple reactions in the pentose and glucuronate inter-
conversions pathway were important in classifying yeasts into
generalists and specialists as determined by the leave-out
analysis, which identified 2050 informative KOs (black boxes).
Boxes are shaded as the percent of each carbon classification
with at least one enzyme in that step of the reaction. The
reaction with the third-highest relative importance in the
machine learning analysis is shown in step 5 and is facilitated
by D-arabinitol 2-dehydrogenase. Notably, experimental
studies suggest that yeast D-arabinitol 2-dehydrogenase is
also capable of completing the reaction in step 4 (91). Step 8
was among the top features used in the machine learning
analysis, despite the fact that KEGG only partially annotated
this gene. The xylulokinase encoded by yeast XYL3 has been
well studied (58). Therefore, we reannotated the XYL3 gene
and have shown its relative abundance (red star). (E) The
carnitine biosynthesis pathway includes multiple reactions
that are important for classifying carbon generalists and
specialists. The reaction in step 4 had the fourth-highest
relative importance in the machine learning classification of
carbon classification. Step 7 was not annotated by KEGG
in any of our yeasts, but this step had been previously
characterized in C. albicans as being facilitated by the
trimethyllysine dioxygenase enzyme encoded by BBH2 (64).
We reannotated BBH2 using this reference sequence
and calculated the relative abundance in each carbon
classification (red star). Finally, we determined the
number of yeasts that could hypothetically complete the
lysine-to-carnitine biosynthesis pathway.
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which is the ARD gene encoding D-arabinitol
2-dehydrogenase, an important component of
the pentose and glucuronate interconversions
pathway (Fig. 4D, step 5). This KO was more
frequently present in the genomes of gen-
eralists (96%, 91/95) than in the genomes of
specialists (71%, 79/111). In a portion of this
pathway, five of the eight reactions were
among the 2050 KOs (with two falling in the
top 100 KOs) that contributed to the classi-
fication of carbon generalists and specialists
(Fig. 4D, black boxes). Notably, growth on xylose
was included in our carbon classification, and
the xylose metabolism genes XYL1 (Fig. 4D,
step 2), XYL2 (step 3), and XYL3 (step 8) were
all identified as important features (with XYL1
fallingwithin the top 100), which suggests that
xylose metabolism genes may be promiscuous
and have multiple metabolic capabilities (58).
This result also supports the hypothesis that
intrinsic genetic factors contribute to niche
breadth by connecting pathways.
The feature with the highest relative impor-

tance was K03940 (relative importance, 0.062),
which encodes an NADH (the reduced form of
nicotinamide adeninedinucleotide) ubiquinone
oxidoreductase core subunit (NDUFS7 in hu-
mans) of complex I of the mitochondrial elec-
tron transport chain. This KO was identified
in 29% of specialists (32/111) and 95% of gen-
eralists (90/95). Complex I is known to vary
widely in presence and makeup, including the
presence of an alternative pathway in some
yeasts (59). For example, in S. cerevisiae, the
NADH oxidoreductase function of complex I
is conducted by three single-subunit enzymes
(Ndi1p, Nde1p, or Nde2p) (60). Conversely, in
Y. lipolytica, complex I is composed of 42 sub-
units, including the NADH ubiquinone oxido-
reductaseNUKM (K03940) (61). Thirty additional
complex I enzymeswerewithin the top2050KOs,
and two fell within the top 10%—K03941 and
K03966, which are both NADH ubiquinone
oxidoreductases in the b subcomplex (KEGG
map00190). The Saccharomycetales and Sac-
charomycodales have both completely lost the
canonical complex I and contain many spe-
cialist yeasts (59). The relatively high impor-
tance of K03940, however, is not solely due
to these orders because the effect iswidespread.
For example, within the Pichiales, 100% (5/5)
of generalist genomes encode K03940, in con-
trast to only 18% (6/33) of specialists. Complex I
has been implicated in C. albicans growth
and virulence (62), as a global regulator of
fungal secondary metabolism in Aspergillus
(63), and results in a higher proton motive
force compared with the alternative path-
way in S. cerevisiae. The presence of com-
plex I in generalists, therefore, may support
increased carbon niche breadth and elevated
growth rates.
The last KO that we investigated was K00474

(relative importance, 0.043), which encodes a

trimethyllysine dioxygenase involved in lysine
degradation. Every step in the pathway that
degrades lysine to carnitine, except the last
step, was identified as important in the ma-
chine learning classification. The last step
(Fig. 4E, step 7) was not annotated by KEGG
in any of our yeasts. Therefore, we annotated
the BBH2 gene, which encodes the trimethyl-
lysine dioxygenase, directly from our predicted
coding sequences using previously published
reference sequences (64). After manual anno-
tation of BBH2, we found that most carbon
generalists were predicted to be able to com-
plete the carnitine biosynthesis pathway (91%,
86/95), whereas relatively few carbon special-
ists were predicted to do so (20%, 22/111).
Carnitine plays an important role in the trans-
port of acetyl coenzyme A (acetyl-CoA), which
in turn is a major metabolite that contributes
to many metabolic pathways, including the
production of adenosine 5′-triphosphate (ATP)
in the mitochondrial tricarboxylic acid (TCA)
cycle. Acetyl-CoA can be produced within the
mitochondria when glucose is available, or,
when glucose is unavailable, it can be trans-
ported into themitochondria using the carnitine
shuttle (65). Some yeasts, including C. albicans,
rely solely on the carnitine shuttle for this
transport (64), whereas other yeasts, such as
S. cerevisiae, can use a carnitine-independent
method for acetyl-CoA transport (66). Simi-
larly, some yeasts, such as C. albicans, can
synthesize carnitine; others, suchasS. cerevisiae,
cannot and rely on exogenous sources. A com-
plete carnitine synthesis pathway may ensure
acetyl-CoA transport when glucose is unavail-
able, especially in species that rely solely on
the carnitine shuttle.
Additionally, carnitine and carnitine acetyl-

transferases can be essential for growth on
some nonfermentable carbon sources. These
include ethanol as well as glycerol in certain
S. cerevisiae mutants with disrupted citrate
metabolism (67). We found that 90.5% (86/95)
of generalists can grow on glycerol compared
with only 24.5% (27/110) of specialists (table
S2). Moreover, specialists that could grow on
glycerol were more likely to have the com-
plete carnitine synthesis pathway compared
with those that did not (z-test, c2 = 10.425, P =
0.0186). These results suggest that carnitine
production affords metabolic flexibility and
carbon niche breadth.

Human yeast pathogens include both carbon
generalists and specialists

This comprehensive dataset and analytical
framework provide the opportunity to study
how the observed genomic, metabolic, and en-
vironmental variation across the subphylum is
associated with any complex trait of interest
(68–70). To illustrate this potential, we exam-
ined the metabolic niche breadths of yeast
pathogens of humans compared with those

of their nonpathogenic close relatives (using a
specific phylogenetic distance cutoff to stan-
dardize the clades) (Fig. 5). The World Health
Organization (WHO) recently released its first-
ever fungal priority pathogens list, which in-
cluded six Saccharomycotina species (71). We
defined 11 yeasts as opportunistic human path-
ogens because they are known to cause human
infections and generally require biosafety level
2 (BSL-2) precautions in research laboratories.
Carbon sources and availability vary in vivo

in humans, which suggests that carbon niche
breadthmay play an important role in promot-
ing or preventing fungal pathogenesis (72).
Yeasts are subject to diverse microenviron-
ments characterized by varying nutrients within
a host (39, 72, 73). Their capacity to survive
under fluctuating carbon conditions has been
closely associated with virulence. For example,
lactate assimilation across the C. albicans
clade, and in Nakaseomyces glabratus (syn.
Candida glabrata), is associated with increased
antifungal and osmotic stress resistance and
has been shown to reduce phagocytosis within
the host (73). Notably, these pathogens exhibit
reduced resistance to the antifungal drug am-
photericin B when grown in culture media
containing lactate relative to culture media
containing glucose (73). We found that patho-
gens spanned the range of carbonnichebreadth
classifications and included specialist, stan-
dard, and generalist yeasts. Carbon niche
breadths within pathogenic yeasts ranged
from 15 inMeyerozyma guilliermondii to only
2 in N. glabratus (74). Furthermore, the pro-
portion of pathogenic yeasts classified as stan-
dard, generalist, and specialist was similar to
that of their nonpathogenic relatives (Fig. 5, A
and B). Collectively, these results suggest that
yeast pathogenicity is not associated with car-
bon niche breadth.
Previous work in C. albicans linked its path-

ogenicity to its high growth rate (75). To ex-
amine whether this link holds across yeast
pathogens, we visualized all pathogenic yeasts
and their relatives on a phylogenetically cor-
rected principal components analysis using all
our growth rate data (Fig. 5C). We observed
no clustering of pathogenic yeasts using car-
bon growth rates. Moreover, yeast pathogens
within the same clade varied in their growth
rate on glucose by almost threefold: Candida
parapsilosis had a growth rate of 0.042,
whereas Candida tropicalis had a growth
rate of 0.124. Our growth rate data, however,
were collected at a specific temperature in de-
fined media and may not reflect growth rates
in human infections.
We also examined the roles of temperature,

gene content, and environment in yeast path-
ogenicity. One feature known to be necessary,
but insufficient, for pathogenicity is growth at
human body temperature, or 37°C (Fig. 5D)
(39). We observed that relatives of human

RESEARCH | RESEARCH ARTICLE

Opulente et al., Science 384, eadj4503 (2024) 26 April 2024 8 of 12

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia B
erkeley on A

pril 25, 2024



pathogens had an elevated frequency of growth
at 37°C (~64%) compared with all yeasts for
which growth at this temperaturewasmeasured
(~41%). This result likely reflects the necessity
of growth at 37°C to evolve before pathogeni-
city. Heat shock proteins (HSPs) are also known
to affect temperature tolerance (76). Examina-
tion of copy number variation in the genes
encoding HSPs in the pathogenic species and
their relatives identified a slight increase in
HSP70 gene copy number among pathogenic
yeasts (Fig. 5D). Finally, we found that patho-

genic yeasts and their relatives had been iso-
lated from all examined environments (Fig.
5E). Our analyses suggest that pathogenicity
can emerge in species across the spectrum of
carbon metabolic breadth. Moreover, the lack
of notable differences between yeast patho-
gens and their nonpathogenic relatives sup-
ports the hypothesis that the traits and genetic
elements contributing to pathogenicity are not
broadly shared across pathogens but are spe-
cific to each (77). The data and analyses pre-
sented in this work provide a model for the

investigation of other complex traits across
Saccharomycotina using our ensemble of ge-
nomic, metabolic, and environmental data.

Conclusions

We focused on two predominant paradigms
proposed to underlie the evolution of yeast
carbon niche breadth. The first paradigm,
where trade-offs dominate, was not supported
when we analyzed more than 10,000 growth
rates measured across 853 yeasts. We found
that generalists typically grew faster on carbon
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Fig. 5. Carbon generalism and specialism are not associated with yeast
pathogenicity. (A) The phylogenetic clades containing human fungal pathogens.
Clades reflect all species within a specific phylogenetic distance from the
identified pathogen. Pathogens are found in three different orders, and at least
one pathogen is classified in the generalist, specialist, and standard categories.
(B) Pathogens and their relatives had nearly identical proportions of generalist,
specialist, and standard yeasts. This result suggests that carbon niche breadth is
not a defining or predictive factor for the potential of a species to gain the ability
to infect humans. (C) Pathogens and their relatives did not differ substantially
in their growth rates on carbon substrates. The phylogenetically corrected
principal components analysis (pPCA) was constructed using growth rates on
carbon substrates and projected onto the first two components (totaling 80%

of the total variance). Pathogens did not cluster together, and generalists and
specialists appeared further apart. This result suggests that pathogens do not
have shared growth rate characteristics. (D) Proportion of yeasts that can grow
at 37°C in pathogens, their relatives, and all sampled yeasts. All yeasts identified
as pathogens can grow at 37°C. Pathogenic yeasts were significantly more likely
to grow at 37°C compared with their nonpathogenic relatives (c2, P = 0.042).
Heat shock protein (HSP) gene copy number was determined using InterPro and
KEGG orthologs. HSP gene copy number was not significantly associated with
pathogenicity. (E) Isolation environment for the specific strains of pathogens
and their relatives. Circles are proportional to the percent of yeasts isolated
from Chordata (orange), Arthropoda (pink), victuals (teal), environmental (blue),
and plants (green).
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sources compared with specialists, even on
those carbon sources for which specialists had
their maximum growth rates. Thus, the ability
to metabolize additional carbon sources does
not come at the cost of reduced growth rates
on other carbon sources. Carbonmetabolism
traits found within generalists were either
maintained across evolutionary time or gained,
even though there was a strong overall trend
for trait loss across the subphylum. Of course,
trade-offs between carbon metabolism traits
likely exist in natural habitats. Future exper-
iments along gradients of different environmental
conditions, such as temperature, competition,
or oxygen availability, may shed additional
light on condition-specific trade-offs in carbon
niche breadth evolution.
By contrast, we found strong support for the

second paradigm in the form of intrinsic fac-
tors that underlie the generalist phenotype.
Machine learning allowed us to identify spe-
cific genes, complexes, and pathways shared
by generalists but largely absent from spe-
cialists. These genes were directly involved
in carbon and energy metabolism, often by
enhancing metabolic flexibility and robust-
ness. This finding supports the second par-
adigm because we identify a shared set of
intrinsic genomic features across the general-
ist phenotype, even though generalists vary in
the specific carbon sources that they can me-
tabolize. This finding does not support the
hypothesis of trade-offs for two reasons. First,
the pathways enriched in generalists are hy-
pothesized to increase metabolic efficiency,
which is contrary to the proposed trade-off
between carbon niche breadth and efficiency.
Second, under the trade-off paradigm, special-
ists and generalists would both have specific
traits that provide them with a selective ad-
vantage. However, we found that generalists,
as compared with specialists, have more genes
in their genomes, including those not directly
associated with carbon metabolism.
Given the advantages of wide carbon niche

breadth and the absence of detectable effi-
ciency costs, the question remains:What forces
are shaping specialist yeasts? In some cases,
carbon specialism could be associated with
rapid gene loss. For example, in the genus
Hanseniaspora (10/14 or 71.4% of specialists),
there were widespread gene losses, including
of genes involved in DNA repair and carbon
metabolism (78). Another hypothesis is that
each specialist is subject to specific evolution-
ary pressures that would obviate unifying fea-
tures. Finally, it is also possible that there are
growth-associated trade-offs that we are unable
to measure. Features, such as enhanced carbon
sequestration, killer yeast toxins, pathogenic-
ity, and microbial community composition,
could provide specialists with advantages in
highly specific environments. For example,
Hanseniaspora species have a growth advan-

tage over other species, including S. cerevisiae,
on grapes at harvest and in the early stages of
alcoholic fermentation (79). Further investiga-
tions into the evolution of yeast generalism
and specialism will likely be fruitful, but a
plethora of additional questions could be ad-
dressed with these data, including quantifying
correlations among genes, traits, and/or ecol-
ogies; investigations of gene family evolution;
research into the origins of pathogenesis; and
genome-informed bioprospecting of yeasts and
their genes for the sustainable production of
cellulosic biofuels and bioproducts. More broad-
ly, by coupling a comprehensive dataset with
a robust analytical framework for studying
macroevolutionary processes, the Y1000+ Proj-
ect provides a roadmap that connects DNA
to diversity.

Materials and methods summary

Detailed materials and methods can be found
in the supplementary materials (80). All data
generated as a part of the project have been
deposited in a Figshare repository (42).

Genome sequencing, annotation,
and phylogenomics

Strains were obtained primarily from the NRRL
(USA) and CBS (Netherlands) culture collec-
tions. We sequenced pair-end libraries using the
IlluminaHiSeq 2500 platform and assembled
genomes using the meta-assembler pipeline
iWGS (81). We assessed assembly quality using
Benchmarking Universal Single-Copy Ortho-
logs (BUSCO) (44) and filtered the assemblies
to remove mitochondrial and bacterial DNA
contaminants. Genomes were functionally an-
notated using KEGG (55) and InterPro (82, 83)
databases. We constructed a phylogenomic data
matrix from 1403 OGs (taxon occupancy for
each group ≥ 50%; 719,591 amino acid sites);
we inferred the phylogeny of the subphylum
using both concatenation and coalescence un-
der maximum likelihood using IQ-Tree (84)
and ASTRAL-III (85), respectively, and esti-
mated the yeast time tree using the RelTime
method (86).

Phenotyping, niche breadth classification, and
testing for trade-offs and trait coevolution

We generated quantitative growth data on 18
carbon and 6 nitrogen sources for 853 yeasts,
measuring optical density every 2 hours for a
week on the BMG Omega SpectroStar Plate
Reader. We conducted all experiments in tri-
plicate, and a new yeast colony was picked for
each yeast across replicates. We calculated
growth rates using a logistic model using the
R package grofit (87). We classified yeasts as
specialist, standard, or generalist for both
carbon and nitrogen metabolism by calculat-
ing the binomial confidence intervals of carbon
and nitrogen breadth relative to randomized
growth data. We measured the correlation

between carbon and nitrogen breadth and
tested for trade-offs between carbon niche
breadth and efficiency (by measuring the cor-
relation between growth rates and carbon
niche breadth classifications) using phyloge-
netic generalized least squares analyses with
PGLScaper (88). Finally, we inferred the co-
evolution of carbon traits and carbon general-
ism or specialism using BayesTraits (http://
www.evolution.reading.ac.uk).

Underlying factors driving generalist and
specialist phenotypes

We identified strain-specific isolation environ-
ments for 1088 yeasts and standardized them
by creating an ontology of environments and
their hierarchical network using Web Protégé
(https://github.com/protegeproject/webprotege).
To identify underlying genomic features con-
tributing to generalist and specialist pheno-
types, we used genome annotations to build
metabolic networks and quantify network var-
iation among generalists and specialists while
accounting for phylogeny. We also identified
KEGG ontologies enriched in generalists and
specialists using a KEGG enrichment analysis
(89). Finally, we constructed a machine learn-
ing algorithm using the XGBoost random
forest classifier (90), which we trained using
90% of the genomic data and using the re-
maining 10% for cross validation, to identify
genes whose presence or absence was most
strongly associated with carbon generalism
and specialism.
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