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Abstract

Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for
what they have in common—genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals.
But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences. In this review, we discuss traits that
vary across the Saccharomycotina subphylum. We describe cases of bright pigmentation; a zoo of cell shapes; metabolic specialties;
and species with unique rules of gene regulation. We discuss the genetics of this diversity and why it matters, including insights into
basic evolutionary principles with relevance across Eukarya.
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Introduction

The fungal kingdom comprises tens of thousands of species rel-
evant for industry, agriculture, ecology, and biomedicine, with
many more likely remaining to be identified (Blackwell 2011, Li
et al. 2021). In the context of the fungal tree of life, the subphy-
lum Saccharomycotina has achieved some measure of fame for phe-
notypes that it lacks altogether. Relatives of this group—the rest
of the fungal phylum Ascomycota—can digest plant cell walls, de-
velop as hyphae and other differentiated cell types, and make
complex secondary metabolites. Saccharomycotina species often do
not have these characteristics. Members of the subphylum have
small genomes, and in most cases, they make only one or two cell
types (Nagy et al. 2014, Stajich 2017, Shen et al. 2018, 2020, Steen-
wyk et al. 2019). Their evolutionary history is largely one of loss
(Krause et al. 2018, Kiss et al. 2019, Merényi et al. 2023): the ances-
tor of Saccharomycotina appears to have shucked off complexities
that had evolved in earlier stages before it branched off from other
Ascomycetes and/or during the radiation of the group.

But innovation has not stopped in Saccharomycotina. During
their diversification, spanning ~400 million years of evolution
(Shen et al. 2018), species in this group have refined traits and
evolved new ones. Indeed, the very simplicity of their genetic
backgrounds brings these phenotypic gains into relief. In this way,
Saccharomycotina can serve as an excellent model for the study of
evolutionary innovation. We thus have chosen phenotypic varia-
tion between species of Saccharomycotina from the wild as the sub-
ject of the current review.

In compiling this review, our goal has been to complement re-
cent landmark genomic surveys of the subphylum and its varia-
tion in genome content, splicing, codon usage, and genetic par-
asites (Steinberg-Neifach and Lue 2015, Dujon and Louis 2017,
Shen et al. 2018, LaBella et al. 2019, 2021, Hurtig et al. 2020, Fred-

ericks et al. 2021, Parker et al. 2023). That is, since Saccharomy-
cotina genomes have been covered so thoroughly and so recently,
we focus on phenotypes instead. Because the trait of virulence
in mammalian hosts has been the subject of incisive recent re-
views (Gabaldoén et al. 2016, Rokas 2022), we explore other facets
of the differences between Saccharomycotina species in terms of
how cells form and grow, what they metabolize, and how they
deal with environmental challenge. We highlight discoveries from
the recent literature, including new phenotypes and their mech-
anisms, and we summarize classic work in the field where it is
pertinent.

With an eye to the potential for particularly straightforward
evolutionary stories, we have restricted ourselves to qualitative
traits from the wild, for which a given clade can be classified as
affected or otherwise. Many variable traits that do not meet this
description are of keen ecological and applied interest in Saccha-
romycotina, e.g. salt, heat, and cold tolerance (Robert et al. 2015,
Gostincar and Gunde-Cimerman 2018, Segal-Kischinevzky et al.
2022); drug sensitivity (Kuo et al. 2010); DNA damage response
(Milo et al. 2019, Steenwyk et al. 2019, Shor et al. 2020, Steen-
wyk 2021); riboflavin production (Averianova et al. 2020); and the
oleaginous phenotype (Ratledge 2013, He et al. 2018, Abeln and
Chuck 2021, Salvador Lépez et al. 2022). As we often need special-
ized phylogenetic methods to infer when and why evolution has
built a given quantitative trait, these cases tend to form a topic all
to themselves and are not our focus here.

By a similar logic, we have earmarked for this review traits that
manifest in well-defined wild Saccharomycotina populations and
species. We do not cover heterotic phenotypes, which result as
long-diverged lineages come together in hybrids; these traits in
Saccharomycotina and their mechanisms form an exciting litera-
ture all their own (Gabaldén 2020).
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Figure 1. Clade-unique traits in Saccharomycotina. Shown is a phylogeny of the subphylum Saccharomycotina (with a star denoting its origin) and
outgroup relatives, with branch lengths not to scale and clade-unique traits of interest highlighted as icons. WGD, descendants of an ancestor that
sustained a whole-genome duplication (really the product of an ancient hybridization) in the family Saccharomycetaceae. Lactose catabolism, the ability
to convert lactose into galactose and glucose. Fructophily, preferential usage of fructose over other substrates. MCFAs, detectable production of
medium-chain fatty acids. Methanol catabolism, the ability to utilize methanol as a sole carbon source. Holdfast, a lifestyle that includes attachment
to nematodes. Petite fixed and petite variable indicate clades where, all or some members, respectively, can proliferate without mitochondrial DNA.

Morphology, vegetative growth, and sex
Yeast morphology and budding

A mycologist on the street, asked for a defining feature of Saccha-
romycotina, is likely to answer, “Yeasts.” Species growing only as
yeasts, with no hyphal morphology, crop up again and again in the
phylogeny (Saccharomyetaceae, Pichiaceae, Saccharomycodaceae, Phaf-
fomycetaceae, and Ascoideacae), likely representing independent
losses of the inferred ancestral hyphal program. Interspersed be-
tween these yeast clades are plenty of lineages that have retained
hyphal growth [e.g. Blastobotrys, Candida, Eremothecium, Yarrowia,
Dipodascaceae, Alloascoidea, and Saccharomycopsis (Philippsen et al.
2005, Nagahama et al. 2008, Stajich et al. 2009, Kurtzman and Rob-
nett 2013, Sipiczki and Hrabovszki 2023)]. The polyphyletic pattern
of yeasts across Saccharomycotina, which also manifests elsewhere
in fungi (Nagy et al. 2014, Naranjo-Ortiz and Gabaldoén 2019), is a
testament to the likely benefit of the yeast lifestyle across niches
(Ivarsson et al. 2020), and to the evolutionary accessibilility of its
mechanisms. Phylogenetic inference points to a role in the latter
for the loss of Zn-cluster transcription factors (Nagy et al. 2014).
Interestingly, in Saccharomycotina, programs to produce asexual
spores show up for the most part in groups that also form hy-
phae [e.g. arthroconidia in Dipodascaceae (Kurtzman et al. 2011),
chlamydospores in Candida albicans and C. dublinensis (Citiulo et
al. 2009), and conidia on condiophores in Blastobotrys (Kurtzman
et al. 2011)], suggesting a molecular and ecological link between
the characters.

Apart from the hyphal-yeast dichotomy, more nuanced mor-
phologies as they vary across Saccharomycotina have caught the eye
of researchers in the field—not for hyphae so much [barring a few
observations of septal pore structure (Van Der Klei et al. 2011)] but
in great depth for budding yeasts. During vegetative growth, most
yeasts adopt an ovoid-to-apiculate (lemon-shaped) cell form, ei-
ther with planktonic, completely septated cells or those that re-
main attached to form pseudohyphae. A few more striking excep-
tions are known. Trigonopsis grow as curious triangular and tetra-
hedral cells as a function of nutrient availability (Fig. 1; Senthe-
shanmuganathan and Nickerson 1962, Kurtzman et al. 2011), for

which no ecological drivers have yet come to light. The ability to
grow a foot-like holdfast, attaching fungal cells to the body of a
living invertebrate animal, has arisen at least twice in Saccharomy-
cotina (Fig. 1),in beetle-associated Pichia stipitis (Suh et al. 2004) and
Botryozyma spp. (Kerrigan et al. 2001). The latter also has a special-
ized cell wall and a mucilage secretion program to help them stick
to the cuticles of nematodes (Kerrigan and Rogers 2013). Plausibly,
these associations with animals could promote nutrient exchange
(Petersen et al. 2016) and/or dispersal for the yeasts, analogous to
models that have emerged for bacterial symbionts (Bayer et al.
2009, Shu et al. 2018). Metschnikowia spp. produce a thick-walled
pulcherrima cell, considered a chlamydospore, with a red color
owing to pulcherrimin production (Fig. 1 and see below) and high
lipid titer (Pitt and Miller 1968); this marks an exception to the gen-
eral trend that only hyphal-forming species in Saccharomycotina
make asexual spores. Plastic white and opaque yeast cell pro-
grams (Fig. 1), which differ in cell axis length, metabolism, mating,
and interactions with the host immune system (Lohse and John-
son 2009), have long appeared to be a unique property of C. albi-
cans, C. dublienensis, and C. tropicalis (Pujol et al. 2004, Turner and
Butler 2014) but were recently reported in a phylogenetically dis-
tant species, Torulaspora microellipsoides (Brimacombe et al. 2020).
With respect to proliferation, one mechanism dominates
Saccharomycotina yeasts during vegetative growth: holoblastic
budding, by which a scar forms during each budding event,
blocking re-use of the bud site during subsequent rounds of mi-
tosis (Kurtzman and Sugiyama 2015). By contrast, a few species
within Saccharomycotina—those of Phaffomycetaceae and Saccha-
romycodaceae (Streiblova et al. 1964, Phaff 1998, Imanishi et al.
2009, Jindamorakot et al. 2009; Smith 2011a, b), and Hanseniaspora
spp. (Boekhout et al. 1994, Jindamorakot et al. 2009)—divide by
enteroblastic budding, with a given cell reusing the identical bud
site again and again at one or the other of its poles (Fig. 1). This
appears to mark an independent acquisition of enteroblastic
budding relative to yeasts of Basidiomycota, which also use the
mechanism (McLaughlin et al. 2001). The ecological drivers re-
main unknown, though in principle enteroblastic budding could
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confer an advantage if it helps minimize defects in membrane
function from bud scars.

Sex and mating type

Most Saccharomycotina species go through sexual reproduction via
fusion of individuals of opposite mating type, followed by meiosis
and gamete release (Wolfe and Butler 2017). A few species-unique
modifications have appeared, most notably parasex (fusion with-
out meiosis) in C. albicans, covered by a longstanding literature
(Mishra et al. 2021), and a program of meiosis without recom-
bination, recently discovered in Saccharomycodes (Papaioannou et
al. 2021). A handful of Saccharomycotina species may have truly
lost sex altogether (Krassowski et al. 2019). Overall, though, as in
other fungi, sex is the rule rather than the exception across the
subphylum—Ilikely driven by the fitness benefits of genetic reshuf-
fling; the pleiotropic “side effects” of sexual programs (Otto 2021);
and/or the influence of selfish elements (Hanson and Wolfe 2017).

Apart from the mechanics of sex per se, the ability for a given
individual to switch mating types has evolved repeatedly in Sac-
charomycotina yeasts (Krassowski et al. 2019). Expert reviews have
explored the potential adaptive roles of switching, namely that
a given clone, even in the absence of genetically distinct mat-
ing partners, could still access the benefits of sex, diploidy, and
meiotic spore formation (Hanson and Wolfe 2017). In one line of
support for the latter model, filamentous Saccharomycotina species
with mitotic spore forms (conidia, chlamydospores, etc.; see Sec-
tion "Yeast morphology and budding") tend not to exhibit mating-
type switching. This would make sense if mitotic programs met
the needs for dormancy in such species and obviated the need
for an extra route to meiosis of the kind that switching provides.
Recent work has pinned down the origin of one switching mech-
anism, that of the Saccharomycetaceae, to the domestication of a
homing element (Coughlan et al. 2020).

Morphology of sexual structures

As in all Ascomycetes, Saccharomycotina species that do have sex
retain the products of meiosis in a sac called an ascus. In terms
of ascus morphologies, the prize for complexity and uniqueness
may go to the bottle shape in Dipodascus (Fig. 1; Vanheerden et al.
2005, Van Heerden et al. 2007, Olivier et al. 2013), which enables
active spore release from turgor pressure, the only case known
in all of Saccharomycotina. Also salient from the literature is the
long, thin ascus form in Metschnikowia and Eremothecium/Ashbya
(Fig. 1; Lachance 2016, Wendland 2020), which accommodates
barbed, needle-like ascospores that may play a role in infection
for some pathogens and dispersal in other species. As for the rest
of Saccharomycotina, though the ascus structure is roughly glo-
bose, ascospore shape and ornamentation vary widely. Cell bi-
ologists have noted ascus morphologies from spherical [Saccha-
romyces (Kurtzman et al. 2011)], warty [Kazachstania, Debaryomces,
and, rarely, Saccharomyces (Mrak and Bonar 1938, Moens et al. 1974,
Bilinski and Miller 1980, Klapholz and Esposito 1980, Imanishi et
al. 2007)], crescent-like [Ascobotryozyma (Kerrigan et al. 2001)], and
hat-like [Glactomyces geotrichum, Pichia membranigaciens, and As-
coidea asiatica (Kurtzman et al. 2011, Kurtzman and Robnett 2013)]
to one report of helical spores [Tortispora ganteri (Lachance and
Kurtzman 2013)]. Essentially all this variation is polyphyletic, con-
sistent with the volatility in characters of sexual spores across
fungi more broadly (Calhim et al. 2018); their ecological roles, if
any, remain unknown (Money 2016). Likewise, Saccharomycotina
species can produce anywhere from one spore [Torulaspora and
Debaryomyces (Suzuki et al. 2011)] to tens of spores [e.g. in Vander-

walotzyma (Chang et al. 2020), Dipodascus (Vanheerden et al. 2005,
Van Heerden et al. 2007, Olivier et al. 2013), and Lipomyces (Kurtz-
man et al. 2011)] within the ascus. The latter may have evolved
in species with little other recourse to effective dispersal mecha-
nisms: when a given spore very rarely finds its way far from the
parent, making large numbers of spores can be one way to beat
the numbers game (Money 2016).

Biochemistry and metabolism
Biochemistry and secondary metabolites

Many secondary metabolite pathways ancestral to Ascomycetes
were lost wholesale in Saccharomycotina (Kroken et al. 2003, Arvas
et al. 2007, Bushley and Turgeon 2010, Khaldi et al. 2010, Chen et
al. 2014, Krause et al. 2018, Linder 2019a). Against this backdrop,
a few small-molecule production traits have emerged in Saccha-
romycotina as evolutionary gains of potential ecological relevance.
Several compelling stories center on the synthesis of iron-uptake
compounds (Fig. 1). In one example, a survey of Saccharomycotina
found that only Kluveromyces spp. and Metschnikowia spp. make
the siderophore pulcherrimin, identifying the causal gene cluster
and inferring its ancient origin and repeated losses elsewhere in
the subphylum (Krause et al. 2018). Recent work suggests a role
for pulcherrimin in microbial competition and stress protection
(Kregiel et al. 2022, Charron-Lamoureux et al. 2023). Meanwhile,
Lipomycetaceae spp. appear to be unique in their synthesis of a sep-
arate siderophore, ferrichrome (Van Der Walt et al. 1990), presum-
ably for iron transport and iron storage as in Schizosaccharomyces
pombe (Schrettl et al. 2004). The latter results, and the wealth of
Saccharomycotina species harboring genes for siderophore uptake
(Kluyver et al. 1953, Araujo and Hagler 2011, Lachance 2016), sug-
gest a landscape of interactions by Saccharomycotina in commu-
nities based on iron nutrients (Thanh et al. 2002), analogous to
well-studied dynamics in bacteria (Kramer et al. 2020).

Another line of investigation has found a lineage-unique
biochemical character in Saccharomyces, Naumovozyma, and
Nakaseomyces, which are so-called post-whole-genome duplica-
tion species of the family Saccharomycetaceae [really the prod-
uct of an ancient hybridization (Marcet-Houben and Gabaldén
2015)]: this clade, and no other Saccharomycotina species yet tested,
make fatty acids 10-14 carbons in length (Fig. 1; Froissard et al.
2015). Plants, other fungal phyla, and bacteria also produce such
medium-chain fatty acids (Liu et al. 2017, Stamatopoulou et al.
2020), which are of relevance for industrial production of fuels,
lubricants, detergents, and cosmetics. In Saccharomycotina, our un-
derstanding of the ecology and evolution of these lipids remains
rudimentary. Aside from making medium-chain fatty acids at
low titer, Saccharomycetaceae species can assimilate and catabo-
lize them from growth media (Nakagawa et al. 2000, McDonough
et al. 2002), but one recent study suggests that these lipids are
not stored in lipid droplets (Funk et al. 2017). Medium-chain fatty
acids in Saccharomycetaceae could represent the product of trunca-
tion errors in the biosynthesis of long-chain molecules. Alterna-
tively, they could be synthesized to serve biological functions in
their own right, including intracellular signaling (Van Roermund
et al. 2000) or interactions with animal hosts, e.g. fruit flies, which
sense them directly (Brown et al. 2021).

Fermentation, anaerobic growth, and petiteness

If the main morphological character we associate with Saccha-
romycotina is yeast growth, metabolically the subphylum has
achieved the most renown for fermentation. Fermentation and
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respiration can be complementary programs to generate energy;
early work motivated by applications in the brewing industry
(Eliodério et al. 2019) identified Saccharomycotina species that are
hard-wired to favor fermentation even in the presence of oxy-
gen, accumulating ethanol at high titer (the Crabtree effect; De
Deken 1966). As the field advanced, two independent acquisitions
of the Crabtree effect became apparent within Saccharomycotina, in
the families Saccharomycetaceae [Saccharomyces, Kazachstania, Nau-
movozyma, Nakaseomyces, and Vanderwaltozyma spp. (Merico et al.
2007)] and Pichiaceae [Dekkera/Brettanomyces spp. (Rozpedowska et
al. 2011, Hagman et al. 2013)], respectively. (The Crabtree effect
also manifests in other fungi and in some animal tissues (Gojkovi¢
et al. 2004, Hagman et al. 2013).) The avid fermentation lifestyle
likely benefits these species by virtue of its rapid rate of ATP syn-
thesis and the ability to kill off competitors via ethanol release
(Pfeiffer and Morley 2014). Genetic mechanisms of the Crabtree
effect, and their evolutionary dating, within Saccharomycotina re-
main an area of active research (Schiller 2003, Thomson et al.
2005, Piskur et al. 2006, Lin and Li 2011, Rozpedowska et al. 2011,
Hagman et al. 2013, Dashko et al. 2014, Pfeiffer and Morley 2014,
Williams et al. 2015).

In the family Saccharomycetaceae, among the clades that ex-
hibit the Crabtree effect, many species also have the ability to
proliferate without mitochondrial DNA, referred to as the petite
phenotype (Fig. 1; Chen and Clark-Walker 1999). The two traits
manifest together in most of the post-whole-genome duplication
clades of this family [Saccharomyces, Kazachstania, Naumovozyma,
and Nakaseomyces spp., though not in all Tetrapisispora or Vander-
waltozyma spp. (Fekete et al. 2007, Merico et al. 2007, Prochazka
et al. 2010)]. Furthermore, not only can most of the post whole-
genome duplication species of Saccharomycetaceae live without res-
piration, and routinely avoid it, but they can also grow in the
absence of oxygen. The latter phenotype appears to have arisen
earlier in the history of Saccharomycetaceae than the date of the
whole genome duplication per se, since it has also been noted in
more basal Saccharomycetaceae clades [Lachancea, Torulaspora, Zy-
gotorulaspora, and Zygosaccharomyces spp. (Merico et al. 2007, Hag-
man et al. 2013, Krause and Hittinger 2022)]. The spotty appear-
ance of each trait—the Crabtree effect, petite formation, and low-
oxygen growth—suggests that selective pressures for these behav-
iors have come and gone repeatedly, even within the family Sac-
charomycetaceae. That said, broadly speaking, the phenotypic syn-
drome has led to a model of ecological specialization by most Sac-
charomycetaceae to low-oxygen but not strictly anaerobic niches
(Krause 2023)—e.g. the environment within ripening and rotting
fruit.

Complementing this extensive literature on respiration-related
traits in Saccharomycetaceae, similar trends have cropped up in
other clades of the Saccharomycotina. Hypoxia tolerance arose in-
dependently in Dekkera/Brettanomyces spp. (Rozpedowska et al.
2011), mirroring the Crabtree metabolism in these species (see
above). And petite positivity appears to have been reinvented by
evolution in Kluyveromyces wickerhamii, C. glabrata, and Hansenias-
pora osmophila (Merico et al. 2007, Hagman et al. 2013, Guo et al.
2016). Such changes may well reflect ecological constraints sim-
ilar to those shaping Saccharomycetaceae. By contrast, yet another
independent gain of hypoxia tolerance, in C. albicans, likely had a
distinct ecological driver, namely the ability to proliferate inside
animal hosts (Ernst and Tielker 2009).

At the opposite extreme, some Saccharomycotina species get
their energy exclusively from respiration, and have lost their abil-
ity to ferment. So-called oxidative yeasts show up across the sub-
phylum, including Kluyveromyces nonfermentans, Kazachstania turi-
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censis, and some Botryozyma and Debaryomyces spp.; others are
members of fungal groups outside Saccharomycotina (Nagahama
et al. 1999, Kerrigan et al. 2001, Kurtzman et al. 2011, Paleo-Lopez
et al. 2016). The prevalence of oxidative yeasts in sampled sea-
water (Kutty and Philip 2008, Libkind et al. 2017) raises the pos-
sibility that extra-avid respiration has been adaptive, or fermen-
tation subject to relaxed selection, in marine niches. In a sepa-
rate story, recent work has traced events by which ancestors of
the Wickerhamiella/Starmiella group lost the ability to ferment and
then gained it back, through the horizontal acquisition of bacte-
rial homologs (Gongalves et al. 2018).

Carbon source utilization

Across the tree of life, organisms from specialized niches often
make use of unique substrates for energy, and this logic has of
course borne out in Saccharomycotina. The ability to break down
methanol as a carbon source is a case in point (Fig. 1): methanotro-
phy arose once in the family Pichiaceae [likely originally in wood-
associated niches (Kurtzman and Robnett 2010), and is now ob-
served in Komagataella/Pichia spp., Ogataea spp., and Kuraishia spp.
(Kurtzman 2005, Suh et al. 2006, Limtong et al. 2008, Yurimoto and
Sakai 2019)]; classic genetic dissection has revealed the underly-
ing pathway (Gellissen 2010, Yurimoto et al. 2011).

Another line of the classic literature has pursued galactose
catabolism in Saccharomycotina, namely its repeated gains and
losses (Opulente et al. 2018) and their genetic basis in metabolic
enzymes and transporters (Rokas and Hittinger 2007, Shen et al.
2018, Haase et al. 2021, LaBella et al. 2021). Similarly, a small
fraction of Saccharomycotina species can split the disaccharide
lactose into its component parts, galactose and glucose (Fig. 1),
and rigorous proof for lactase as a causal gene has emerged in
Kluyveromyces spp. domesticated for milk fermentations (Sreekr-
ishna and Dickson 1985, Varela et al. 2019).

Xylose utilization, also a longstanding interest in Saccharomy-
cotina, is polyphyletic (Fig. 1; Nalabothu et al. 2023), with growth
on this wood sugar noted in Komagataella/Pichia spp. and species
from the guts of wood-eating insects, Scheffersomyces and Spathas-
pora spp. (Toivola et al. 1984, Lee et al. 1986, Nguyen et al. 2006,
Koivistoinen et al. 2008, 2008). Here the molecular basis remains
incompletely understood, since primary xylose catabolic enzymes
are insufficient for xylose growth per se in Saccharomycotina species
(Jeffries and Kurtzman 1994).

Glucose repression

In a complex environment, a given fungus needs to make a
choice—should it try to make use of multiple carbon sources si-
multaneously, or should it prioritize just one pathway? Classic
work focused on the shutdown of other catabolic pathways in
the presence of glucose, as it manifests in the model species S.
cerevisiae (Kayikci and Nielsen 2015). But we now know of evo-
lutionary tweaks across Saccharomycotina that have yielded quite
different metabolic logic. Extensive literature has focused on or-
ganisms that ignore glucose, i.e. shut down glucose catabolism
pathways when there is fructose around. This fructophily trait
(Fig. 1) seems to have been invented twice in Saccharomycotina,
once in Zygosaccharomyces spp. (Leandro et al. 2011) and again
in species of the Wickerhamiella/Starmerella clade that thrive in
fructose-rich flower nectar (Baek et al. 2010, Magyar and Téth
2011). The mechanism of the latter has been partly pinned down
to a specialized fructose transporter (Pina et al. 2004, Gongalves
et al. 2020). A separate field has focused on clades of Saccharomy-
cotina that metabolize multiple sugars at the same time. These
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include activation of galactose catabolic pathways in the pres-
ence of glucose, in a domesticated milk lineage of S. cerevisiae
(Duan et al. 2019) and some K. lactis (Breunig 1989); simultaneous
glucose and mannose breakdown by Lipomyces (Yang et al. 2014);
and glucose and lactose co-utilization by C. albicans (Sandai et al.
2012).

Nutrient utilization: a wider view

Having devoted years to targeted case studies of metabolic vari-
ation across Saccharomycotina, the field has now come to appreci-
ate how many more substrate-preference stories there are to tell.
Species compendia (Kurtzman et al. 2011) started this trend by
enabling a broader, but anecdotal, view of nutrient specialization
as it comes and goes in the subphylum, from proline to ammo-
nia and from maltose to inulin. More recently, high-throughput
methods have allowed well-controlled surveys of growth on hun-
dreds of substrates. The latter has led to new insights into the
evolutionary history of metabolic gains and losses across Saccha-
romycotina, and the discovery of associations with ecology and
genome content (Novo et al. 2009, Gongalves et al. 2016, Opu-
lente et al. 2018). Among the many advantages of this approach, it
has put the evolutionary study of nitrogen utilization well within
reach (Wang et al. 2015, Filteau et al. 2017, Linder 2019b) as a
complement to the classic focus on variation in carbon source
preferences.

Regulatory rewiring

Alongside studies of the attributes of cells and their growth as
they vary across Saccharomycotina, a sizeable literature has cata-
logued species divergence in gene expression (Tsankov et al. 2010,
Tirosh et al. 2011, Thompson et al. 2013, Brion et al. 2016). The
approach here is often to consider mRNA levels of interest for
their own sake, as molecular phenotypes that serve as models for
the discovery of evolutionary principles. Most proximally, the field
has focused on how and why gene regulation changes between
species; within Saccharomycotina, the major advances have come
in a few model systems, whose results we have condensed into a
list of references in Table 1.

For much of the field, the term “regulatory rewiring” means
changes between species in the targets of regulatory proteins. In
the simplest cases, two species have more or less the same com-
plement of regulators and downstream targets but with distinct
relationships. Thus, the division of labor between regulators—
which genes they induce or repress—has changed over evolution-
ary time. In Table 1A, we lay out examples of this kind of diver-
gence in Saccharomycotina, and they are legion. A salient conclu-
sion from the literature has been how little such changes may
have to do with macroscopic traits: they may have arisen and been
maintained by genetic drift with no functional consequences (No-
cedal and Johnson 2015).

In another version of regulatory rewiring, two species sub-
ject to the same environmental stimulus trigger different expres-
sion outcomes. This may be mediated by new regulatory proteins
altogether or, as above, by factors of ancestral origin that one
species has adjusted to achieve a new logic. We list two obser-
vations of this type from the Saccharomycotina literature in Ta-
ble 1B. In each, as species set off different expression programs
in response to the environmental exposure, their ultimate cellular
phenotypes also change—establishing a compelling potential link
between divergent genetics, gene regulation, and organismal fit-
ness. In landmark cases, similar stories have emerged from com-

parative transcriptomics in higher organisms (Dalal and johnson
2017).

Conclusions and outlook

From morphology to metabolism, we have laid out a range of ex-
amples in which Saccharomycotina species evolved divergent phe-
notypes. Though our knowledge even of the best-characterized
traits is not complete, we can infer with confidence that many
represent true evolutionary novelties. Some represent phenotypic
gains in just one lineage, and others have recurred in many in-
dependent groups across the subphylum or, more broadly, in
the fungi. For a few such traits we know the underlying genes,
driven in large part by powerful genome sequencing and analy-
sis efforts. The latter have underscored the importance of gene
presence/absence, copy number polymorphisms, horizontal gene
transfer, and codon optimization as major modes of evolution.
Many more of the cases we have covered here are ripe for fu-
ture genetic dissection. Indeed, as the field proceeds, Saccharomy-
cotina will keep serving as a flagship for comparative biology
and genetics, thanks to their compelling ecology, small haploid
genomes, and genetic tractability. Discoveries from Saccharomy-
cotina will continue to shed new light on when and how na-
ture has built new traits—and to help forge an understanding
of evolutionary principles from the wild, with relevance across
Eukarya.
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