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Art for Earth

Shop by product type,

conservation status, or

buy a sticker of Sciart

logo!

o

Vinyl Stickers Poster Prints Camper Mugs Endangered Animals No current concern

-~

Have a question? Check out the Frequently Asked Questions (FAQ) section or get in touch via twitter!
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https://www.etsy.com/shop/JLSteenwyk



Art for Earth

Using art to raise awareness and
Immortalize endangered species

African wild dog (Lycaon pictus) Blue whale (Balaenoptera musculus) Galapagos penguin (Spheniscus mendiculus)
« Status: Endangered « Status: Endangered « Status: Endangered
« Population: 1,409 « Population: 10,000 - 25,000 « Population: fewer than 2,000
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Art for Earth

Using art to raise awareness and immortalize
endangered species or species | love

Fly agaric (Amanita muscatria) Oyster mushroom (Pleurotus ostreatus) Morel mushroom (Morchella esculenta)
o $8.99 vinyl sticker (FREE shipping) o $8.99 vinyl sticker (FREE shipping) o $8.99 vinyl sticker (FREE shipping)

o $22.99+ poster print (FREE shipping) o $22.99+ poster print (FREE shipping) o $22.99+ poster print (FREE shipping)
o $28.99 camper mug (FREE shipping) o $28.99 camper mug (FREE shipping) o $28.99 camper mug (FREE shipping)
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1 | INTRODUCTION

In the year 1660, 13-year-old Maria Sibylla Merian roamed the
gardens and countryside of Germany taking detailed notes about
caterpilars, moths, butterflies and their interactions with host
plants, accompanying her notes were elaborate multimedia depic-
tions of insect and plant Bfe cycles (Figure 1). Merian's efforts in
documenting interspecies relationships are regarded as early contri-
butions to modern natural history and ecology, although the term
‘ecology’ was  coined approximately  two  centuries  Iater
[Etheridge, 2011a 2011b; Peters & Winthagen, 1999). Her
influence can be seen in the work of naturalists such as John
James Audubon (Etheridge, 2015; Palmeri, 2017). Merian's sucoess
in part stems from her ability to use art to bolster her science and
vice versa,

Merian is one of many scientists and artists who blended the arts
and sciences over the centuries. In fact, scientist-artist polymaths like
Aristotle and Leonardo da Vinci were more commonplace in part
because of the common goal science and art share: interpreting and
representing the natural world. The ‘great divide' of the arts and
sciences in Western cultures is thought to have started in the 19th
century, conciding with the term 'scentist’ being coined (Braund &
Reiss, 2019; Sumner, 1959, Zhu & Goyal, 2019). The division became
reinforced. Schools for arts and sciences were separated as
unfounded claims about brain differentiation formulated (Zhu &
Goyal 20179). For example, the right and left brain hemispheres were
thought to be individually responsible for arts and science leaming,
respectively (Sperry, 1968) However, evidence [from cognitive
scientists favours a holistic view of the brain wherein a wide range of
stimulation (e.g. arts and sciences) improves broad brain function and
critical thinking skills (Braund & Reiss, 201%; Howes, Kaneva,
Swanson, & Wiliams, 2013).

Today, the benefits of a holistic view of the arts and the scences
have been recognized by numerous institutions. For example, Scence,
Technology, Engineering, Arts and Mathematics [STEAM) inspired
curriculum is used to help students build skils for broad problem
solving in K-12 schooks [Kim & Park, 2012; Peppler, 2013; Sochacka,
Guyotte, & Walther, 2016). In higher education, artists, designers,
researchers and inventors have formed forward-thinking coalitions
such as the Center for Art, Science & Technology at Massachusetts
Institute of Technology (bttps://artsmitedu/cast/) and Artlab at
Vanderbilt University (https://arthabvanderbdtcom/) Lo reunite the
arts and sciences. These initiatives and many others have used the
arts as an effective form of communication between scientists and
the broader community (lEngworth, 2017), ultimately helping
dsseminate major soentific lindings across society.

Perhaps one of the most important and recent scentific findings
in the field of bioclogical sciences is our understanding of the cellutar
life cycle. Seminal discoveries that unraveled the controls of the life
cycle were made studying the model unipolar  budding
yeast Saccharomyces cerevisioe (Hartwell, Culotti, Pringle, &
Resd, 1974). Comparative studies of S. cerevisioe, the fission yeast
|Schizosaccharomyces pombe) and animals revealed striking samilarities
supgesting the life cyde is evolutionaridly stable (Breeden &
Nasmyth, 1987). Exploiting these similarities has enabled yeasts to be
powerful models for cancer biology research and the development of
anticancer therapeutics (Gao, Chen, & Huang, 2014; Guaragnells
et al., 2014; Schwartz & Dickson, 2009). However, examination of
non-conventional yeasts and thewr life cydes can provide novel
insights important to the Felds of cell biology, evolutionary biclogy
and more. For example, speces of the budding yeast genus
Harsemospara have lost numerous cell cycle control genes, incuding
MAD1, MADZ and RAD?, and components of the Anaphase Promoting

Complex and dsplay aypical bipolar budding patterns (Steenwyk
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Lineages of interest across my career
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plant genomes
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Data generation has outpaced data analysis

i

Data analyzed

Data generated
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Inferring genetic
networks from
phylogenies

Jacob L. Steenwyk




Networks capture the complexity of genomic function
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Costanzo et al. (2016), PMID: 27708008



Networks capture the complexity of genomic function
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PEX1 and PEX6 share function

Pex1p & Pexobp: forms a heterodimer involved
IN recycling peroxisomal signal receptor Pexdp
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Geisbrecht et al. (1998), PMID: 9671729



PEX1 and PEX6 share function

Pex1p & Pexobp: forms a heterodimer involved
IN recycling peroxisomal signal receptor Pexdp

Mutations that disrupt protein
Interactions cause neurologic
disorders including:

» Zellweger syndrome,

* neonatal adrenoleukodystrophy,
» Infantile Refsum disease
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Genetic interactions are gene-gene associations

Fitness
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Halder et al. (2021), PMID: 33145589



Genetic interactions are gene-gene associations

Fitness

Double

mutant
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Genetic interactions are gene-gene associations
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Genetic interactions are gene-gene associations

Fitness
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Too many pairwise combinations of genes

Digenic combinations (in millions)
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Methods to infer gene-gene associations

o Coexpression
* Gene presence/
absence patterns

@JLSteenwyk




Methods to infer gene-gene associations

o Coexpression

* Gene presence/
absence patterns

 Gene coevolution
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Gene-gene coevolution predicts shared function

* gene coevolution refers to:

- two genes that covary Iin parallel across
speciation events
-often observed among genes that share function,

are coexpressed, or are part of the same multi-
meric complexes
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Steenwyk et al. (2021), PMID: 33560364



Gene-gene coevolution predicts shared function

* gene coevolution refers to:
- two genes that covary Iin parallel across
speciation events
-often observed among genes that share function,
are coexpressed, or are part of the same multi-
meric complexes

PhyKIT: a broadly applicable UNIX shell
P h K I toolkit for processing and analyzing
phylogenomic data

Jacob L Steenwyk =, Thomas J Buida, I, Abigail L Labella, Yuanning Li,
Xing-Xing Shen, Antonis Rokas =

d tOOlkit fOI' examining mllltiple Bioinformatics, btab096, https://doi.org/10.1093/bioinformatics/btab096
sequence alignments and trees Published: 09 February2021 Article history v
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The mirror principle to detect gene coevolution

Gene A Gene B Gene C Gene D

= (T
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Steenwyk et al. (2021), PMID: 33560364 *gene trees are constrained to the species tree topology; mathematical corrections and transformations not shown



The mirror principle to detect gene coevolution

Gene A Gene B Gene C Gene D
Gene
trees
Gene A and B
The
‘mirror’
principle
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The mirror principle to detect gene coevolution

Gene A Gene B Gene C Gene D

=C e

Gene A and B Gene A and C Gene Band D

‘mirror’
principle
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The mirror principle to detect gene coevolution

Gene A Gene B Gene C Gene D

=C e

Gene A and B Gene A and C Gene Band D

‘mirror’
principle

V" Correlated evolution X< Correlated evolution < Correlated evolution

Examine ©

()]
covariation §
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Steenwyk et al. (2021), PMID: 33560364 *gene trees are constrained to the species tree topology; mathematical corrections and transformations not shown



Genes of a feather evolve together

v Correlated evolution * Coevolving genes

tend to share function,
be coexpressed, or
are part of the same
multimeric complexes
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Steenwyk et al. (2021), PMID: 33560364

*gene trees are constrained to the species tree topology; mathematical corrections and transformations not shown



Genes of a feather evolve together

ow o0

* Coevolving genes
tend to share function,
be coexpressed, or
are part of the same
multimeric complexes

 But can we build a

genetic network?
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Saccharomycotina yeast

———
— » Saccharomycotina, a
| [i— budding model subphylurm
—

0.05 substitutions/site %

Chris Hittinger
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Saccharomycotina yeast

———
— » Saccharomycotina, a
| [i— budding model subphylurm
—

» Spans 332 species of
budding yeast

0.05 substitutions/site %

Chris Hittinger
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Saccharomycotina yeast

——— » Saccharomycotina, a
| [i— budding model subphylurm
—

» Spans 332 species of
budding yeast

» 2,408 orthologous genes
across all budding yeasts

0.05 substitutions/site %

Chris Hittinger
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Saccharomycotina yeast

—— » Saccharomycotina, a
] {% - budding model subphylum

» Spans 332 species of
budding yeast

» 2,408 orthologous genes
across all budding yeasts

{ » Calculate gene covariation
= across ~3 million pairwise

e % combinations of genes

Chris Hittinger

o @JLSteenwyk

Shen et al. (2018), PMID: 30415838



PEX6, RER
N W H O

O -

PEX1 and PEX6 are coevolving

r=0.93
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PEX1, RER
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PEX1 and PEX6 are coevolving

r=0.93

' Pex1p & Pex6p: forms a
L -8 heterodimer involved

IN recycling peroxisomal
signal receptor Pex5p
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Constructing a coevolutionary genetic network

PEXT
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Constructing a coevolutionary genetic network

PEXT

geneA

geneB
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Constructing a coevolutionary genetic network

PEXT

geneA

geneB
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Constructing a coevolutionary genetic network

PEXT

geneB
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A global gene coevolutionary network

Nodes are genes

Edges connected
coevolving genes
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Network reflections of cellular structure

Cytoplasm
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Genes from pathways are coevolving
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Genes from pathways are coevolving

DNA Replication Network
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Genes from multimeric proteins are coevolving

DNA Replication Network
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A global network provides insight to a hierarchy of function
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Can signatures of
gene coevolution
provide insight to your
genes of interest?




Can signatures of
gene coevolution
provide insight to your
genes of interest?

YES!
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Facilitating phylogenomic workflows and beyond
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Phylogenomics doesn’t solve everything

Review > Trends Genet. 2006 Apr;22(4):225-31. doi: 10.1016/).tig.2006.02.003.
Epub 2006 Feb 21.

Phylogenomics: the beginning of incongruence?

Olivier Jeffroy 1, Henner Brinkmann, Frédéric Delsuc, Hervé Philippe

Affiliations <+ expand
PMID: 16490279 DOI: 10.1016/).tig.2006.02.003

Free article

Resolving Difficult Phylogenetic Questions: Why More
Sequences Are Not Enough

Hervé Philippe [E), Henner Brinkmann, Dennis V. Lavrov, D. Timothy J. Littlewood, Michael Manuel, Gert Wérheide,

Denis Baurain
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Incongruence is to be celebrated!

nature reviews genetics

Explore content v  About the journal v  Publish with us v

nature > nature reviews genetics > review articles > article

Review Article | Published: 27 June 2023

Incongruence in the phylogenomics era

Jacob L. Steenwyk, Yuanning Li, Xiaofan Zhou, Xing-Xing Shen & Antonis Rokas &3

Nature Reviews Genetics 24, 834-850 (2023) | Cite this article

8371 Accesses | 69 Altmetric | Metrics
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Phylogenomic subsampling, in brief
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Phylogenomic subsampling, in brief

1. Unstable bipartitions will be sensitive to gene/taxon/site selection




Phylogenomic subsampling, in brief

1. Unstable bipartitions will be sensitive to gene/taxon/site selection

2. Subsample the full data matrix and reinfer the species tree using
fewer (but typically still several dozen to hundreds of genes)
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Phylogenomic subsampling, in brief

. Unstable bipartitions will be sensitive to gene/taxon/site selection

. Subsample the full data matrix and reinfer the species tree using
fewer (but typically still several dozen to hundreds of genes)

. Compare resulting phylogenies and determine which bipartition are
unstable
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Phylogenomic subsampling, in brief

. Unstable bipartitions will be sensitive to gene/taxon/site selection

. Subsample the full data matrix and reinfer the species tree using
fewer (but typically still several dozen to hundreds of genes)

. Compare resulting phylogenies and determine which bipartition are
unstable

. Examine potential drivers of incongruence thereafter. Incongruence
will be examined in a later lab

0 @JLSteenwyk




Phylogenetic subsampling

Complete

phylogenomic
data matrix




Phylogenetic subsampling

Complete
phylogenomic
data matrix

Complete
phylogenomic
data matrix

Infer species-
level phylogeny
using the complete
data matrix
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Phylogenetic subsampling

Complete
phylogenomic
data matrix

Subsample
complete
matrix for
50% of
top-scoring
genes for
individual
metrics
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Phylogenetic subsampling
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Phylogenetic subsampling

—]Alignment length

€ |Average bootstrap support
L |Comp eteness
L |Treeness/RCV

T PI Sites

- { | Complete
phylogenomic
- | data matrix
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Phylogenetic subsampling

—]Alignment length

€ |Average bootstrap support
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L |Treeness/RCV
" |PI Sites
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all species-level
phylogenies
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Phylogenetic subsampling

—]Alignment length

€ |Average bootstrap support
L |Comp eteness
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" |PI Sites
T Complete
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Collect and compare
all species-level
phylogenies
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across all
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Metrics that capture phylogenetic signal

Alignment length
Alignment length with no gaps

GC content (for NTs)
Pairwise identity
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of parsimony informative sites
# of variable sites
Relative composition variability
Average bootstrap support value
Degree of violation of a molecular clock

. Evolutionary rate

. Long branch score

. Ireeness

. Saturation
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. RCVT

. Compositional bias per site
. Evolutionary rate per site
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Phylogenetic signal across genes

OCONOSOO AW =

-t bk — ok A
2 W NN =2 O

Alignment length

Alignment length with no gaps

GC content (for NTs)

Pairwise identity

# of parsimony informative sites

# of variable sites

Relative composition variability
Average bootstrap support value
Degree of violation of a molecular clock

. Evolutionary rate

. Long branch score
. Treeness

. Saturation
. Treeness / RCV
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Alignment length

>spl
ACGTAGCG-TCGATC
>Sp2
ACGT-GCGATCGATC
>sp3
ACGTAGC-ATCGATC
>sp4
ACGTAGCGATCGATG
>Sp5
AC-—-AGCGATCGATC
>Spo6

ACGTAGCGA———-ATC

The length of this
alignment 1s 15 sites




Alignment length

>spl
ACGTAGCG-TCGATC
>Sp2
ACGT-GCGATCGATC
>sp3
ACGTAGC-ATCGATC
>sp4
ACGTAGCGATCGATG
>Sp5
AC-—-AGCGATCGATC
>Spo6

ACGTAGCGA---ATC

Higher values are better!

The length of this
alignment 1s 15 sites




Relative composition variability

* Average variability in the sequence composition among taxa in an MSA
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Relative composition variability

* Average variability in the sequence composition among taxa in an MSA
* Evaluates potential composition biases
* violate assumptions of site composition homogeneity in standard
substitution models
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Relative composition variability

* Average variability in the sequence composition among taxa in an MSA
* Evaluates potential composition biases
* violate assumptions of site composition homogeneity in standard
substitution models

Ci3—Cq4

Zz 1 Z] 1 sxn
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Relative composition variability

* Average variability in the sequence composition among taxa in an MSA
* Evaluates potential composition biases
* violate assumptions of site composition homogeneity in standard
substitution models

Ci3—Cq4

Zz 1 Z] 1 sxn

* c Is the number of different character states per sequence type
e nis the number of taxa in an MSA
e s is the number of sites in an MSA
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Relative composition variability

>Seq 1
MKGATTLAK

>Seq 2
MK-AITLAK

>Seq 3
MKGATT—-K

>5eq 4
MK-AITLA-

RCV =0.375
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>Seq 1
MKGATTLAK

>Seq 2
MK-AITLAK

>Seq 3
MKGATT——K

>5eq 4
MK-AITLA-

RCV =0.375

Relative composition variability

>Seq_1
MKTTTTTTT

>Seq_2
MKQQQQQQQ

>Seq_3
MKKKKKKKK

>Seq_4
MKLLLLLLL

RCV =1.1667
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Relative composition variability

Lower compositional bias

Higher compositional bias

>Seq 1 >Seq_1
MKGATTLAK MKTTTTTTT
>Seq 2 >Seq_2
MK-AITLAK MKQQQQQQQ
———————————————————
>Seq 3 >Seq_3
MKGATT—K MKKKKKKKK
>Seq 4 >Seq_4
MK-AITLA- MKLLLLLLL
RCV =0.375 RCV = 1.1667
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Relative composition variability

Lower compositional bias Higher compositional bias
>Seq 1 >Seq_1
MKGATTLAK MKTTTTTTT
>Seq 2 >Seq_2
Lower RCV MK—-AITLAK MKQQQQQQQ
———————————————————
values are better  >>€q_3 >5€eq_3
MKGATT—K MKKKKKKKK
>5Seq 4 >Seq_4
MK-AITLA- MKLLLLLLL
RCV =0.375 RCV = 1.1667
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Relative composition variability

Lower compositional bias Higher compositional bias
>Seq 1 >Seq_1
MKGATTLAK MKTTTTTTT
>Seq 2 >Seq_2
Lower RCV MK—-AITLAK MKQQQQQQQ
———————————————————
values are better  >>€q_3 >5€eq_3
MKGATT—K MKKKKKKKK
>5Seq 4 >Seq_4
MK-AITLA- MKLLLLLLL
RCV =0.375 RCV = 1.1667
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Long branch score

A

Long branch scores

A: 7317
B: -14.63
C:-19.51
D: -19.51
E:-9.76
F: -9.76
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Saturation by multiple substitutions

OBSERVED NUMBER OF SUBSTITUTIONS
VS. EXPECTED DIVERGANCE TIME

EXPECTED NUMBER OF SUBSTITIONS
VS. EXPECTED DIVERGANCE TIME
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Saturation by multiple substitutions

S X-axis can be

@0 A approximated using
& phylogenetic distances
o  Tip-to-tip distances

N a tree

OBSERVED NUMBER OF SUBSTITUTIONS
VS. EXPECTED DIVERGANCE TIME

EXPECTED NUMBER OF SUBSTITIONS
VS. EXPECTED DIVERGANCE TIME
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Saturation by multiple substitutions

OBSERVED NUMBER OF SUBSTITUTIONS
VS. EXPECTED DIVERGANCE TIME

EXPECTED NUMBER OF SUBSTITIONS
VS. EXPECTED DIVERGANCE TIME

X-axis can be
approximated using
phylogenetic distances
* Tip-to-tip distances
IN a tree

Y-axis can be

approximated using

pairwise identity
 Distance in an MSA
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Saturation by multiple substitutions

OBSERVED NUMBER OF SUBSTITUTIONS
VS. EXPECTED DIVERGANCE TIME

EXPECTED NUMBER OF SUBSTITIONS
VS. EXPECTED DIVERGANCE TIME

The closer the slope is to 1,
the better.
PhyKIT reports the slope
PhyKIT also reports the
absolute difference
between the slope and 1

* Thus, the lower the

value the better
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Treeness

treeness = 0.0476




Treeness

treeness = 0.0476 treeness = (0.381
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Treeness

Low treeness High treeness

treeness = 0.0476 treeness = (0.381
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Treeness

Low treeness High treeness

treeness = 0.0476 treeness = (0.381

Higher treeness values are better
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Degree of violation of a molecular clock

Non-clock like

A




Degree of violation of a molecular clock

Non-clock like

A

C

D

High DVMC




Degree of violation of a molecular clock

Non-clock like Clock-like
A A
B B
C C
D D

High DVMC




Degree of violation of a molecular clock

Non-clock like Clock-like
A A
B B
C C
D D

High DVMC Low DVMC




Degree of violation of a molecular clock

Genes with low DVMC may be more
useful for divergence time analysis




Phylogenetic signal across taxa

1. Long branch score
2. RCVT




Long branch score

A

Long branch scores

A: 7317
B: -14.63
C:-19.51
D: -19.51
E:-9.76
F: -9.76
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Relative composition variability per taxon

RCVT; = Zizl

« RCVT;: relative composition variability of jth taxon

S Xn

* c:the number of different character states per sequence type in an alignment
e cj: number of occurrences of the ith character state for the jth taxon
* Ci: the average number of the ith ¢ character state across n taxa

e s:total number of sites

e nN: number of taxa




Relative composition variability per taxon

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE




Relative composition variability per taxon

>1
GGGGGCCC

>7
ATGCATGC

Seqguences 3

1 and 5 are
GC rich ATGCATGC
>4

ATGCATGC

>5
GGGGGGEGE




Relative composition variability per taxon

Seqguences
1 and 5 are

GC rich

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE

—_—

Calc RCVT




Relative composition variability per taxon

Seqguences
1 and 5 are

GC rich

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE

—_—

Calc RCVT
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Relative composition variability per taxon

Seqguences
1 and 5 are

GC rich

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE

—_—

Calc RCVT

ouUl ©h~ oW OoON O

.12

. 09

. 09

. 09

21

Lower
values
Indicate
lower
blases




Phylogenetic signal across sites

1. Compositional bias
2. Evolutionary rate




>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGGE

Compositional bias per site




>1
GGGGGCCC

>7
ATGCATGC

>3

>4
ATGCATGC

>5
GGGGGGGE

—_—

ATGCATGC .10 comp

bias per
site

R B P & o o o O
CO 0O O N N O© N N

Compositional bias per site

1
2
3
4
5
o
/
8

0.06547
0.06547
Nal

0.06547
0.06547
0.06547
0.6290
0.6290

0.6547
0.6547
Nall

0.6547
0.6547
0.4493
0.1797
0.1797




Compositional bias per site

chi-square p-val Multi-test corrected p-val

>1 1 0.2 0.6547 0.6547
OGLGGLLL 2 0.2 0.6547 0.6547
Z‘%GCATGC 3 0.0 nan nan

.3 4 0.2 0.6547 0.6547
ATGCATGC  caccomp 5 0.2 0.6547 0.6547
A e DBSPET 6 1.6 0.6547  0.4493
- 7 1.8 0.6290 0.1797
GGGGGGGG 8§ 1.8 0.6290 0.1797




Compositional bias per site

chi-square p-val Multi-test corrected p-val

1 0.2 0.6547 0.6547
2 0.2 0.6547 0.6547
3 0.0 nan nan
4 0.2 0.6547 0.6547
AJGCATGC  Galccomp 5 0.2 0.6547 0.6547
JBSPET 6 1.6 0.6547  0.4493
7 1.8 0.6290 0.1797
8 1.8 0.6290 0.1797




Compositional bias per site

chi-square p-val Multi-test corrected p-val

1 0.2 0.6547 0.6547
C 2 0.2 0.6547 0.6547
s 3 0.0 nan nan
4 0.2 0.6547 0.6547
R
(| caccomp 5 0.2 0.6547 0.6547
bias per
cl site 0 1.0 0.6547 0.4493
7/ 1.8 0.6290 0.1797
G 8 1.8 0.6290 0.1797




Evolutionary rate per site

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE




Evolutionary rate per site

>1
GGGGGCCC

>7
ATGCATGC

>3
ATGCATGC

>4
ATGCATGC

>5
GGGGGGEGE

T
Calc evo
rate per
site

1
2
3
4
5
o
/
8
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. 43
. 43
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Evolutionary rate per site

ATGC

—_—

Calc evo
rate per
site
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. 56
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Evolutionary rate per site

C
C
C
C
G

Calc evo
rate per
site

oo dJ oo U1 &~ W NN =
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Evolutionary rate per site

rate per
site

0o dJd oo U1 & W NN =
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S0 many metrics, so many details

1.

ONOOTE WD

O

10.
11.
12.
13.
14.
15.
16.
17.

Alignment length - higher better

Alignment length with no gaps - higher better
GC content (for NTs) - lower better

Pairwise identity - depends

of parsimony informative sites - higher better
of variable sites - higher better

Relative composition variability - lower better
Average bootstrap support value - higher better
Degree of violation of a molecular clock - lower better
Evolutionary rate - depends

Long branch score - lower better

Treeness - higher better

Saturation - lower better

Treeness / RCV - higher better

RCVT - lower better

Compositional bias per site - lower better
Evolutionary rate per site - depends
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Where known, PhyKIT documentation will say

Degree of violation of the molecular clock

Function names: degree_of_violation_of_a_molecular_clock, dvmc

Command line interface: pk_degree_of_violation_of_a_molecular_clock, pk_dvmec
Calculate degree of violation of a molecular clock (or DVMC) in a phylogeny.

Lower DVMC values are thought to be desirable because they are indicative of a lower degree of

violation in the molecular clock assumption.

&) Usage

General usage Typically, outgroup taxa are not included in molecular clock analysis. Thus, prior to calculating
, , DVMC from a single gene tree, users may want to prune outgroup taxa from the phylogeny. To
Alignment-based functions ) )

prune tips from a phylogeny, see the prune_ tree function.

&) Tree-based functions
Bipartition support statistics Calculate DVMC in a tree following Liu et al., PNAS (2017), doi: 10.1073/pnas.1616744114.
Branch length multiplier
Collapse bipartitions phykit degree_of_violation_of_a_molecular_clock <tree>
Covarying evolutionary rates
Degree of violation of the Options:
molecular clock :
<tree>: input file tree name
Evolutionary rate

https://jIsteenwyk.com/PhyKIT () @JLsteenwyk




Outline

Introduction

Inferring genetic networks from phylogenies
Phylogenomic subsampling
Misc. notes before the tutorial
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Misc. notes on the tutorial

* There are steps in the tutorial for plotting

* These steps are for the sake of completeness
* But exporting figures in the container is a little complicated
* Feel free to skip executing these steps

 But please read and understand them
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Misc. notes on the tutorial

* There are steps in the tutorial for plotting

* These steps are for the sake of completeness
* But exporting figures in the container is a little complicated
* Feel free to skip executing these steps

 But please read and understand them

 Gemma will have an easier time helping you then me
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Misc. notes on the tutorial

* There are steps in the tutorial for plotting

* These steps are for the sake of completeness
* But exporting figures in the container is a little complicated
* Feel free to skip executing these steps

 But please read and understand them

 Gemma will have an easier time helping you then me

* Curious about career or something not related related to the workshop?

e Feel free to ask!
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Thank you for your time and attention!

hhmi Zg5

Howard Hughes 7 . ,
Medical Institute Life Sciences

King Lab
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Chrisa Staikou

Alain G. De Las Bayonas
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Stefany Gonzalez
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