About
I have diverse research interests, including genome evolution and function, fungal pathogenicity,
and software engineering for the life sciences. For example, I aim to unravel the evolutionary modes and molecular mechanisms
that contribute to fungal pathogenicity. This work has implications for the development of new strategies for identifying, preventing,
and combatting fungal infections.
In addition to my research, I am deeply committed to promoting diversity, equity, and inclusion in science. I am involved in efforts
that aim to increase the representation of underrepresented groups in STEM fields. I am also passionate about science communication
and outreach and regularly participate in community engagement events to share research and foster a dialogue between scientists and
the public.
Research Interests
Genome Evolution and Function
Determining the principles of genome function and evolution is a major goal in evolutionary biology. The Saccharomycotina subphylum of yeasts
are a remarkably diverse group of organisms. In fact, budding yeast diversity is roughly on par with the animal and plant kingdoms (see
figure from Shen et al. 2018, Cell). As part of the
Y1000+ initiative, sequencing and analysis of 1,000+ budding yeast species is underway.
To date, numerous insights into the tempo and mode of genome evolution across approximately 400 million years have been made.
For example, a genetic network inferred from evolutionary information captured conserved cellular structure and genome function
(Steenwyk et al. 2022, Science Advances).
Discoveries have also been made among specific lineages; for example, budding yeast from the genus
Hanseniaspora have lost numerous cell cycle and DNA repair genes (Steenwyk
et al. 2019, PLOS Biology). This discovery is in conflict with current wisdom, which suggests these genes are important to
all life and therefore evolutionarily 'resistant' to change. These and other studies highlight conservation and flexibility
in dynamics of genome evolution.
Steenwyk et al. (2023) Nature Reviews Genetics
Steenwyk et al. (2022) Science Advances
Steenwyk et al. (2019) PLOS Biology
Fungal Pathogenicity
Filamentous fungi including species from the genera Aspergillus and Candida are of medical and technologic importance.
Some species pose threats to human or plant health while others produce mainstay pharmaceuticals like penicillin. Studies unraveling the
evolutionary history of these genera will help uncover the molecular processes that contribute to some microbes being harmful to humans
while others are helpful. In one study, we investigated the evolutionary history of globally distributed clinical isolates of Aspergillus
latus, which led to the discovery that A. latus originated from allodiploid hybridization wherein the genome content of both
parental species is maintained (see figure from Steenwyk, Lind
et al. 2020, Current Biology). Aspergillus hybrids exhibited phenotypic heterogeneity and were distinct from closely
related species including their parents and their close relatives. These results suggest that allodiploid hybridization contributes to
the evolution of filamentous fungal pathogens. In a separate study, genomic and phenotypic analysis revealed the genomes of nonpathogenic
Aspergillus fungi encoded genes known to impact virulence and have similar phenotypic profiles compared to pathogenic species
(Steenwyk et al. 2020, Genetics).
These findings raise the question of "what makes a pathogen?"
Steenwyk et al. (2021) Microbiology Spectrum
Steenwyk, Lind et al. (2020) Current Biology
Steenwyk et al. (2019) mBio
Software and Methods Development
Research in the biological sciences — such as evolutionary biology, molecular biology, and others — often relies on computational tools.
To equip bioinformaticians with the computational tools necessary to conduct research, I have developed multiple software. For example,
ClipKIT an alignment trimming algorithm that retains phylogenetically informative sites and
removes the rest, outperformed other alignment trimming methods across a total of ~140 thousand alignments (see figure from
Steenwyk et al. 2020, PLOS Biology) and is now available as a
browser application.
PhyKIT, a Swiss-army knife toolkit for processing and analyzing multiple sequence alignments
and phylogenies, facilitates determining information content in phylogenomic data matrices, conduct evolution-based screens of gene function,
and identify putative signatures of rapid radiation events among other things
(Steenwyk et al. 2021, Bioinformatics). A complete list of
software I have developed can be found on the software page.
Steenwyk et al. (2022) PLOS Biology
Steenwyk et al. (2021) Bioinformatics
Steenwyk et al. (2020) PLOS Biology